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Abstract— Visualizing the collective modulation of multiple
neurons during a known behavioral task is useful for ex-
ploratory analysis, but handling the large dimensionality of
neural recordings is challenging. We further investigate using
static dimensionality reduction techniques on neural firing rate
data during an arm movement task. This lower-dimensional
representation of the data is able to capture the neural states
corresponding to different portions of the behavior task. A
simulation using a dynamical model lends credence to the
ability of the technique to generate a representation that
preserves underlying dynamics of the model. This techniqueis a
straightforward way to extract a useful visualization for neural
recordings during brain-machine interface tasks. Meaningful
visualization confirms underlying structure in data, which can
be captured with parametric modeling.

I. INTRODUCTION

Natural movement reconstruction from neural record-
ings require well-trained decoding algorithms. Motor brain-
machine interfaces have motivated algorithms to decode
upper-limb movements from neural data [1], [2]. Invasive
brain-machine interfaces use the firing rate of multiple
individual neurons as the inputs and translate the signals
into robotic or cursor movements. Often, natural movement
reconstruction is a prerequisite to online operation, but
independent of a given parametric model it is unclear how
well the natural movement can be reconstructed from given
data.

Without a well-trained parametric model it is diffi-
cult to quantify the relationship between the joint neural
activity—a high-dimensional variable—and the movement—
a 3-dimensional variable—especially on a trial-by-trial basis.
Any movement-correlated modulation is often cloaked by
both the sheer dimensionality of the data and the intrinsic
noise of neural spiking. For the case of repeated time-
locked trials, the average rate (or variance) of individualor
pairs of neurons can be shown in the form of a peri-event
time histogram, but the movement trajectories may vary
widely between trials even for repeated tasks [3]. Without
repeated trials, it is still possible to compute correlation
between the individual movement dimensions and the firing
rate over time. These methods are not defined for the joint
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activity of more than 2 neurons. Probabilistic model-based
approaches can be used to account for the noisiness and
high dimensionality [4], [5], but for initial analysis we desire
a simpler approach without estimation and explicit model
formulation. A review of the problems and some suggested
techniques are found in [3].

For exploratory analysis we propose using low-
dimensional visualization of the multi-channel neural
modulation during natural movement. As the underlying
movement is in three-dimensions, it is a reasonable
assumption that any relevant dynamics can be preserved
in a visualization with equal or smaller dimension. A
useful visualization would preserve any association between
the neural modulation and the movement trajectories, i.e.
whether nearby areas in the visualization correspond to
similar portions of movement; thus, the location in the
visualization can serve as a predictor of the position during
movement.

We form the low-dimensional visualization by using di-
mensionality reduction on the original neural responses. We
can consider the visualization to be alatent space, i.e. a
low-dimensional space that preserves the underlying dynam-
ics of the original space. Indeed, the static dimensionality
reduction technique local linear embedding (LLE) [6] has
proven useful for preserving neural trajectories in other
neuroscience analyses [7], [8]. To form the visualization we
use stochastic neighborhood embedding,t-SNE [9]. The t-
SNE algorithm has proven useful for visualizing the aspects
of high-dimension datasets such as clusters and manifolds.

In this work, we uset-SNE to produce a visualization
of neural data and analyze how well the latent space pre-
serves known external dynamics. Although visualization is
inherently qualitative, we also use a quantitative measureof
association to assess how well the visualization alone can
be used to predict the movement. We test it on a simulated
dynamical system and on real neural data recorded during
a reach and grab task. In both cases, the method is able
to preserve the association between portions of the latent
space and the external variables while reducing the space
to 2 dimensions. Thus, this method explores a method to
visualize the joint neural dynamics during natural movement
or brain-machine interface tasks, and can be used to gauge
the neural modulation before explicit modeling.

II. M ETHOD

Dimensionality reduction techniques for visualization at-
tempt to find a 2 or 3-dimensional embedding that preserves
aspects of the data in its original, high-dimensional space,



such as clusters, manifolds, and pairwise dissimilarity. The
specific characteristics preserved vary by method, e.g. local
distances, local neighborhoods, pseudo-geodesic, or global
distances. For the neural data we are interested in preserving
the neighborhoods of similar neural modulation by having
them nearby in the latent space, while at the same time
separating dissimilar neural activity into different portions
of latent space.

For qualitative analysis we use a 2-dimensional latent
space mapped to a color-wheel. Thus, each point’s location
defines its color, and we color the corresponding point of
the external dynamics with the same color for easy visual
analysis.

A. Neural data representation

Multi-electrode neural recordings provide high-
dimensional data in the form of series of neuron action
potentials. Instead of using the exact time of the action
potentials many models count only the spikes in continguous
non-overlapping fixed-width bins with a bin width in the
tens to hundreds of milliseconds. At each time step a vector
is composed of the spike counts of all neurons

xi = [r1(i), r2(i), . . . , rn(i)] ∈ R
n

whererj(i) is the count for thejth neuron at theith time
step, andn is the number of neurons. We wish to find an
visualization of a set{xi}Ni=1 of these vectors that results in a
set{yi}Ni=1 ∈ R

2 such that the location of theyi’s preserves
the relative pairwise Euclidean distances between thexi’s.

One of the difficulties in rate counts is choosing a bin
width that captures the dynamics while reducing the variabil-
ity. For simplicity, we use a single choice of 100 ms bins and
use a 3-tap moving-average filter on each individual neural
channel before applying the static dimensionality reduction.
In general, different choices of bin size and filter order need
consideration depending on the data.

B. Stochastic Neighborhood Embedding

The algorithmt-distributed Stochastic Neighborhood Em-
bedding, t-SNE, has been shown to produce useful visu-
alizations of high-dimensional datasets [9]. The algorithm
uses a probabilistic formulation with the Kullback-Leibler
divergence as the cost function. Specifically, all of the pair-
wise Euclidean distances in both spaces, original and latent,
are transformed to densities that represent the probability
of points i and j being in the same neighborhood. In the
original space, the joint density is formed as the symmetric
combination of the conditional probability of findingj in
the neighborhood ofi and vice versa (2). The conditional
density is considered a Gaussian density centered around
point i, (1), where the scale parameterσi is chosen so
that the conditional density has a user-defined perplexity—
the logarithm of perplexity is the Shannon entropy. The
perplexity corresponds to a smoothed estimate of number of
neighbors each point has [9]. In the low-dimensional latent
space, the density function centered at each point is the
Student’st-distribution with one degree of freedom, i.e. the

Cauchy distribution (3). Unlike the original space, the choice
of scale is arbitrary, but the Cauchy distribution providesa
much larger tail than that of the Gaussian. This avoids a
“crowding” problem [9]. In a high dimensional space, many
points can exist at the same distance and density, but in the
low dimensional space, the same number of points would
have to crowd together to be at the same density with a
Gaussian distribution. However, with the Cauchy distribution
the density falls off much slower with increasing distance,
thereby increasing the range of distances that are within a
given density range. The increase in range of distances allows
the points to spread out resulting in useful visualization.

Let {xi}Ni=1 be the points in the original space and{yi}Ni=1

be the points in the embedded space. The original conditional
densities are represented by

pj|i =
exp(−‖xj − xi‖2/2σ2

i )∑
k 6=i exp(−‖xk − xi‖2/2σ2

i )
. (1)

Then the joint density is

pij = (pi|j + pj|i)/2n. (2)

The embedded space has joint density

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (3)

The cost function is the Kullback-Leibler Divergence,

C = DKL(P ||Q) =
∑
i

∑
j 6=i

pij log(pij/qij). (4)

The algorithm initializes the latent space with a PCA
projection, and proceeds to minimize the KL divergence by
gradient descent with a momentum term. See [9] for the
details on the derivation; their code is publicly available1.

C. Prediction Performance Measure

In section, we quantify how well the low-dimensional
embedding preserves information that would be useful in
a decoding task, versus using the high-dimensional data for
the same task. As a data driven approach, we consider the
performance of nearest neighbor prediction using a scaled
version of theΓ2 statistic proposed in [10]. In general, for
a set of joint samples{(yi, zi)}Ni=1, we find the nearest
neighbor in the marginal space and find the corresponding
neighborhood size of those point in the other marginal space,
where the neighbors are defined using Euclidean distance.
Let the index of the nearest neighbor ofyi be denoted
ν{y}(i), and letKNNz(i, j) denote the function that returns
which neighbor ofzi is zj , e.g. 1st, 2nd, orkth- nearest
neighbor. The measure is

γ{(y,z)} =
1

N

N∑
i

KNN{z}(i, ν{y}(i))− 1

N − 1
. (5)

Values of γ close to 0 indicate good prediction, values
close to 0.5 indicate chance prediction. The value ofγ can be
interpreted as the percentage of the predicted space that the
nearest neighbor maps to: a one-to-one mapping corresponds
to γ = 0.

1http://homepage.tudelft.nl/19j49/t-SNE.html
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Fig. 1. (Top) The Lorenz attractor colored by its latent space embedding.
(Bottom) The points in latent space define the color coding. The latent space
clearly captures the two orbits of the attractor.
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Fig. 2. (Top) The Lorenz attractor colored by the Poisson model’s latent
space embedding. (Bottom) The points in latent space define the color
coding. The original orbits are not visible as in Fig. 1, but based on the
color-coding their relative locations are still preserved.

III. R ESULTS

A. Simulated Data

The technique is tested on data with known dynamics, the
Lorenz attractor, a dynamical system (6) that produces quasi-
periodic cycles inR3. A simulated neural spike count model
is driven by the Lorenz attractor’s state space. The underlying
probabilistic model is Poisson distributed spike counts, a
common model for the variability of spiking data. The loca-
tion in state space(xi, yi, zi) at time stepi controls the rate
of three inhomogeneous Poisson processes,(λ1,i, λ2,i, λ3,i)
through non-linear equations using the normal cumulative

distribution function on the empirically normalized locations
(7). In addition, three additional dimensions,(λ4, λ5, λ6),
are added that correspond to uninformative ‘neurons’ whose
counts are Poisson distributed with rate of 3.

dx

dt
= 10(y − x),

dy

dt
= x(28− z)− y,

dz

dt
= xy − 8

3
z (6)

λ1,i = 1 + 5Φ((xi − x̄)/sx)

λ2,i = 10− 5Φ((yi − ȳ)/sy)

λ3,i = 1 + 5Φ((zi − z̄)/sz)

Φ(t) = 1/
√
2π

∫ t

−∞

exp(−τ2/2)dτ

(7)

The Lorenz attractor was sampled 500 times during 25 s
of dynamics (the initial point was(1, 1, 1.5)). The sampled
locations drive the Poisson model and the resulting count
series is filtered with a 3-tap moving average filter. We use
t-SNE with a perplexity of 25 on both the original samples,
Fig. 1, and the filtered count data, Fig. 2. From Fig. 2, it
appears that the variability of the count data destroys the
distinctive trajectories as in Fig. 1, but the location in the
latent space corresponds to location in the original state space
as seen by the color-coding in Fig. 2.

For quantitative analysis, 200 random realizations are
generated for the same dynamics, and the ability to predict
locations in the original 3-dimensional state-space is assessed
by (5). Table I has the mean and standard deviation ofγ when
using both the original count and the filtered count data,t-
SNE, and the first two principle components (PCA). From
the table it is clear that filtering is necessary with the count
data,t-SNE preserves the filtered structure, and PCA is not
able to capture the same structure.

B. Reach and Grab Task

In this section, we test goal of this method in producing a
visualization of high-dimensional neural space that preserves
the association to known behavioral data. The neural data
we use was collected in Dr. Nicolelis’s primate laboratory
at Duke University. Specifics can be found in [1]. The data
is recorded from an owl monkey’s cortex while the animal
was performing a food reaching task. Multiple micro-wire
arrays record from 104 neural cells in multiple cortical areas:
posterior parietal cortex, left and right primary motor cortex,
and dorsal premotor cortex. Synchronous recordings provide
the reaching hand’s position in three dimensions. The spikes
are binned at 100 ms, and then filtered with a 3-tap moving
average filter, the hand position is also at 10 Hz. In this
dataset, there is over 38 min of data during which the animal
would reach and eat food sitting on two different tray, and
in-between reaches the animal would return its hand to a
resting location.

Applying t-SNE with a perplexity of 15 to 100 s of filtered
data results in the embedding shown in Fig. 3; the original
hand trajectories are colored by the instantaneous location
in the latent neural space. The clear distinction in coloring



for the different segments indicate that across multiple trials
the reach, return, and resting segments correspond to dis-
parate locations in latent space. This implies that the neural
responses for each movement have distinct firing patterns
from each other. The responses for multiple reaches and
returns are relatively more similar to each other than the
portions that correspond to resting. Overall, the visualization
results revealed strong association with movement, which
is expected on data that was used for real-time movement
reconstruction [1].

Hand trajectories colored by location in latent neural space

Mouth

Food

Food

Rest

Return

Fig. 3. The movement trajectories colored by the corresponding neural
state’s location in the latent space. Similar colors for similar movements
indicate a useful latent space embedding. (Inset) Positionin latent space
defines the color of the corresponding movement. Each point is also colored
coded by the average firing rate across all units (red being the highest and
dark blue the lowest ensemble firing). In the latent space plot, the cluster
of points on the lower right are represented by yellow and correspond to
the return movement, points on the upper center and right arerepresented
by light green or cyan and correspond to the reach movements,the points
corresponding to the rest state spread across the remainderof the latent
space.

To quantify the performance across more trials, we use
7 non-overlapping 300 s segments, since this is 3 times
as many points we scale the perplexity 3-fold to 45, and
measure the movement predication (5) using the original
count data, the filtered count data, the latent space produced
by t-SNE, and the first two components from principle
component analysis (PCA). From Table I, the mean value of
γ indicates that the nearest-neighbor in the original space is a
poor predictor, filtering the count data significantly increases
performance, andt-SNE maintains most of the structure
in just two-dimensions, whereas the PCA projection is not
useful for prediction.

IV. CONCLUSION

The results obtained using this method can provide an
answer to the question of whether similar movement tra-
jectories have similar neural representation. It does thisby
producing a visualization that maintains the neighborhoods

TABLE I

γ PREDICTION PERFORMANCE(5) FOR BOTH DATASETS

III-A III-B
Mean St. Dev. Mean St. Dev.

Original 0.408 0.016 0.427 0.017
Filtered 0.293 0.018 0.078 0.016
t-SNE w/ Filtered 0.294 0.018 0.087 0.018
PCA w/ Filtered 0.340 0.016 0.444 0.016

of the original data, which is useful for prediction. The
method requires no explicit model or trial-based averaging.
In addition, it can be used with minimal preprocessing, i.e.
spike binning and low-pass filtering of the rates, andt-SNE
only requires a single user-defined parameter, the perplexity
of the original space. For the movement task, the visualiza-
tion neatly segmented the different portions of movement.
Similar attempts for visualization were made using PCA and
ensemble averaging, but these methods were not successful
in capturing any distinction between the segments of the
movements. Overall, this technique is useful for exploratory
analysis of neural recordings without assumptions or model
formulation. However, since the method is stochastic the user
is left with no explicit model for the embedding; thus, further
modeling that captures the structure seen in the visualization
is still required.
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