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Abstract— Visualizing the collective modulation of multiple activity of more than 2 neurons. Probabilistic model-based
neurons during a known behavioral task is useful for ex- approaches can be used to account for the noisiness and
ploratory analysis, but handling the large dimensionality of high dimensionality [4], [5], but for initial analysis we siee
neural recordings is challenging. We further investigate sing . i . . .
static dimensionality reduction techniques on neural firirg rate a S|mplgr approa(_:h without estimation and explicit model
data during an arm movement task. This lower-dimensional formulation. A review of the problems and some suggested
representation of the data is able to capture the neural stas techniques are found in [3].
corresponding to different portions of the behavior task. A For exploratory analysis we propose using low-
simulation using a dynamical model lends credence to the yinengional visualization of the multi-channel neural

ability of the technique to generate a representation that dulati duri tural t As th derlvi
preserves underlying dynamics of the model. This techniqussa ~ Moduiaion during natural movement. AS ine underlying

straightforward way to extract a useful visualization for neural ~movement is in three-dimensions, it is a reasonable
recordings during brain-machine interface tasks. Meanindul —assumption that any relevant dynamics can be preserved
visualization confirms underlying structure in data, which can  jn a visualization with equal or smaller dimension. A
be captured with parametric modeling. useful visualization would preserve any association betwe

I. INTRODUCTION the neural modulation and the movement trajectories, i.e.

. whether nearby areas in the visualization correspond to
Natural movement reconstruction from neural record;

: . : ) ) . “similar portions of movement; thus, the location in the
ings require well-trained decoding algorithms. Motor bral isualization can serve as a predictor of the position durin
machine interfaces have motivated algorithms to decoci/ﬁ

. “~movement.
upper-limb movements from neural data [1], [2]. Invasive We form the low-dimensional visualization by using di-
brain-machine interfaces use the firing rate of multipl

'T‘nensionality reduction on the original neural responses. W

individual neurons as the inputs and translate the signaé%n consider the visualization to belatent space, i.e. a
into robotic or cursor movements. Often, natural movemenl . v ensional space that preserves the underlying dynam

_reconstructlon IS a prereqwsne_to onhng _operat|0n, b%s of the original space. Indeed, the static dimensionalit
independent of a given parametric model it is unclear hO\PI

Il th wral i b tructed f .~ Teduction technique local linear embedding (LLE) [6] has
\(,jv:ta € natural movement can be reconstructed from glVe&oven useful for preserving neural trajectories in other

Without ll-trained i del it is diffi neuroscience analyses [7], [8]. To form the visualizatia w
'thout a wetl-trained parametric. modet 1t 1S i~ o giochastic neighborhood embeddiR§NE [9]. The t-
cult to quantify the relationship between the joint neur

fivit high-di ional variabl dth ¢ E algorithm has proven useful for visualizing the aspects
activity—a hign-dimensional variabie—and th€ movement—g high-dimension datasets such as clusters and manifolds.
a 3-dimensional variable—especially on a trial-by-triasls.

A ; lated dulation is oft loaked b In this work, we uset-SNE to produce a visualization
ny movement-correiated moguiation IS often cloaxke f neural data and analyze how well the latent space pre-

both the sheer dimensionality of the data and the IntrInSI§erves known external dynamics. Although visualization is

lnmiedcif_ Teutrr?l spiking. Fc;r the case of r?pegtgd t'r“?ﬁherently qualitative, we also use a quantitative meastire
ocked frials, the average rate (or variance) of indivi association to assess how well the visualization alone can

pairs O.f neurons can be shown in the fgrm O_f a pen-everbte used to predict the movement. We test it on a simulated
time histogram, but the movement trajectories may var

. . ' él'ynamical system and on real neural data recorded during
widely between trials even for repeated tasks [3]. Wlthougl reach and grab task. In both cases, the method is able

repeated trials, it is still possible to compute correiauoto preserve the association between portions of the latent

between the individual movement dimensions and the f|r|r_1 ace and the external variables while reducing the space

rate over time. These methods are not defined for the joi 2 dimensions. Thus, this method explores a method to
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such as clusters, manifolds, and pairwise dissimilaritye T Cauchy distribution (3). Unlike the original space, theicko
specific characteristics preserved vary by method, e.@l loof scale is arbitrary, but the Cauchy distribution provides
distances, local neighborhoods, pseudo-geodesic, omaglolmuch larger tail than that of the Gaussian. This avoids a
distances. For the neural data we are interested in pregervi‘crowding” problem [9]. In a high dimensional space, many
the neighborhoods of similar neural modulation by havingoints can exist at the same distance and density, but in the
them nearby in the latent space, while at the same timew dimensional space, the same number of points would
separating dissimilar neural activity into different ports have to crowd together to be at the same density with a
of latent space. Gaussian distribution. However, with the Cauchy distiitout
For qualitative analysis we use a 2-dimensional latenthe density falls off much slower with increasing distance,
space mapped to a color-wheel. Thus, each point’s locatidhereby increasing the range of distances that are within a
defines its color, and we color the corresponding point ajiven density range. The increase in range of distancessillo
the external dynamics with the same color for easy visudhe points to spread out resulting in useful visualization.
analysis. Let{z;}, be the points in the original space af} ,
. be the points in the embedded space. The original conditiona
A. Neural data representation densities are represented by
i Multl—_electrode .neural recordlngs provide hlgh— o exp(—||z; — i]|2/20?)
imensional data in the form of series of neuron action Djli = e = mil2/207)
potentials. Instead of using the exact time of the action Z’“?&i exp(— o — il|*/207
potentials many models count only the spikes in continguoud'en the joint density is
non-overlapping flxed—_V\_/ldth bins with a b!n width in the pij = (Daf; + pyia)/ 2. 2)
tens to hundreds of milliseconds. At each time step a vector - .
is composed of the spike counts of all neurons The embedded space has|10|nt dTg)S'?'
T+ lyi —yill7)~
T; = [Tl(i),Tg(i), - ,Tn(i)] e R" dij = Zk(;él(l + Hyk J_|yl||2)1- (3)

wherer; (i) is the count for thejth neuron at theth time  The cost function is the Kullback-Leibler Divergence,
step, andn is the number of neurons. We wish to find an

(1)

visualization of a sefz;} ¥, of these vectors that results in a C=DrL(Pl|Q) = Z Zpij log(pij/ai;).  (4)
set{y;})¥., € R? such that the location of thg's preserves . e _
the relative pairwise Euclidean distances between ihs. The algorithm initializes the latent space with a PCA

One of the difficulties in rate counts is choosing a birProjection, and proceeds to minimize the KL divergence by
width that captures the dynamics while reducing the vakiabigradient descent with a momentum term. See [9] for the
ity. For simplicity, we use a single choice of 100 ms bins ang€tails on the derivation; their code is publicly available
use a 3-tap moving-average filter on each individual neurd. Prediction Performance Measure
channel befqre applying the stat_ic d.imensior?ality redurcti In section, we quantify how well the low-dimensional
In ge_neral,_d|fferent ch0|ces of bin size and filter Ordermeeembedding preserves information that would be useful in
consideration depending on the data. a decoding task, versus using the high-dimensional data for
B. Stochastic Neighborhood Embedding the same task. As a data driven approach, we consider the
performance of nearest neighbor prediction using a scaled
version of thel'; statistic proposed in [10]. In general, for
a set of joint sampleq(y;, 2z;)}~.,, we find the nearest

The algorithme-distributed Stochastic Neighborhood Em-
bedding,t-SNE, has been shown to produce useful visu

alizations Ot]; hbi_glg_h:[_dir?ensic;n?I datizeti [9P]<' |-:—bhe I?Il?mll:i)tlh neighbor in the marginal space and find the corresponding
uses a probabilistic formulation wi € rullback-Leibie neighborhood size of those point in the other marginal space

divergence as the cost function. Specifically, all of tha-pai where the neighbors are defined using Euclidean distance.
wise Euclidean distances in both spaces, original andtlatep_et the index of the nearest neighbor of be denoted

are transformed to densities that represent the probabilit . o X
of points i and j being in the same Eeighborhoog. Ir?ath v,y (1), and letKNN. (7, j) denote the function that returns

- . S Swhich neighbor ofz; is z;, e.g. 1st, 2nd, okth- nearest
original space, the joint density is formed as the Symmemﬁeighbor The measure is

combination of the conditional probability of finding in
the neighborhood of and vice versa (2). The conditional 1
density is considered a Gaussian density centered around Ny = N : N _1
point 7, (1), where the scale parametey is chosen so o -

that the conditional density has a user-defined perplexity— Values ofy close to 0 indicate good prediction, values

the logarithm of perplexity is the Shannon entropy. Thé:lose to 0.5 indicate chance prediction. The valug o&n be

perplexity corresponds to a smoothed estimate of number |(r)1fterpreted as the percentage of the predicted space #at th

neighbors each point has [9]. In the low-dimensional Iateqrge:risgnelghbor Maps to: & one-to-one mapping corresponds

space, the density function centered at each point is the
Student’st-distribution with one degree of freedom, i.e. the !http://homepage. tudel ft.nl/19j49/t-SNE. htmn

N i 1)) —
ZKNN{Z}(W{y}(U) L 5



Lorenz atiractor colored by
location in latent space

Fig. 1. (Top) The Lorenz attractor colored by its latent gpambedding.
(Bottom) The points in latent space define the color codire [Rtent space
clearly captures the two orbits of the attractor.

Lorenz atiractor colored by
location in Poisson model latent space

X 20 -50 y

Fig. 2. (Top) The Lorenz attractor colored by the Poisson efiedatent
space embedding. (Bottom) The points in latent space defiaecolor
coding. The original orbits are not visible as in Fig. 1, baséd on the
color-coding their relative locations are still preserved

Ill. RESULTS

A. Smulated Data

distribution function on the empirically normalized loicats

(7). In addition, three additional dimensionS\4, As, A¢),

are added that correspond to uninformative ‘neurons’ whose
counts are Poisson distributed with rate of 3.

dx dy

dz 8
= — (28 -2)—y, T —ay -3z )

)\1)1‘ =1+ 5(1)((111 - :E)/sm)
A2 =10 = 5P((y; — §)/sy)
)\311' =1+ 5(1)((21 — 5)/Sz) (7)

B(t) = 1/\/%/t exp(—72/2)dr

The Lorenz attractor was sampled 500 times during 25 s
of dynamics (the initial point wasl, 1,1.5)). The sampled
locations drive the Poisson model and the resulting count
series is filtered with a 3-tap moving average filter. We use
t-SNE with a perplexity of 25 on both the original samples,
Fig. 1, and the filtered count data, Fig. 2. From Fig. 2, it
appears that the variability of the count data destroys the
distinctive trajectories as in Fig. 1, but the location ire th
latent space corresponds to location in the original sfzdees
as seen by the color-coding in Fig. 2.

For quantitative analysis, 200 random realizations are
generated for the same dynamics, and the ability to predict
locations in the original 3-dimensional state-space iess=d
by (5). Table | has the mean and standard deviationwhen
using both the original count and the filtered count dé&ta,
SNE, and the first two principle components (PCA). From
the table it is clear that filtering is necessary with the ¢oun
data,t-SN\E preserves the filtered structure, and PCA is not
able to capture the same structure.

B. Reach and Grab Task

In this section, we test goal of this method in producing a
visualization of high-dimensional neural space that prese
the association to known behavioral data. The neural data
we use was collected in Dr. Nicolelis’s primate laboratory
at Duke University. Specifics can be found in [1]. The data
is recorded from an owl monkey’s cortex while the animal
was performing a food reaching task. Multiple micro-wire
arrays record from 104 neural cells in multiple corticaleee
posterior parietal cortex, left and right primary motorteat
and dorsal premotor cortex. Synchronous recordings peovid
the reaching hand’s position in three dimensions. The spike
are binned at 100 ms, and then filtered with a 3-tap moving

The technique is tested on data with known dynamics, theverage filter, the hand position is also at 10 Hz. In this
Lorenz attractor, a dynamical system (6) that producesigquasiataset, there is over 38 min of data during which the animal
periodic cycles irR3. A simulated neural spike count modelwould reach and eat food sitting on two different tray, and
is driven by the Lorenz attractor’s state space. The unthgrly in-between reaches the animal would return its hand to a

probabilistic model is Poisson distributed spike counts,

gesting location.

common model for the variability of spiking data. The loca- Applying t-SNE with a perplexity of 15 to 100 s of filtered

tion in state spacér;,y;, z;) at time stepi controls the rate
of three inhomogeneous Poisson procesées;, A2 i, As.;)

data results in the embedding shown in Fig. 3; the original
hand trajectories are colored by the instantaneous latatio

through non-linear equations using the normal cumulativie the latent neural space. The clear distinction in colprin



for the different segments indicate that across multipsdstr
the reach, return, and resting segments correspond to dis-
parate locations in latent space. This implies that thealeur
responses for each movement have distinct firing patterns
from each other. The responses for multiple reaches and
returns are relatively more similar to each other than the
portions that correspond to resting. Overall, the visaaian
results revealed strong association with movement, which
is expected on data that was used for real-time movemen

TABLE |
~ PREDICTION PERFORMANCE(5) FOR BOTH DATASETS

-A 111-B
Mean St. Dev. Mean St Dew.
Original 0.408 0.016 0.427 0.017
Filtered 0.293 0.018 0.078 0.016
t-SNE w/ Filtered  0.294 0.018 0.087 0.018
PCA w/ Filtered 0.340 0.016 0.444 0.016

reconstruction [1].

Hand trajectories colored by location in latent neural space

01‘t the original data, which is useful for prediction. The
method requires no explicit model or trial-based averaging
In addition, it can be used with minimal preprocessing, i.e.
spike binning and low-pass filtering of the rates, arfNE
only requires a single user-defined parameter, the petplexi
of the original space. For the movement task, the visualiza-
tion neatly segmented the different portions of movement.
Similar attempts for visualization were made using PCA and
ensemble averaging, but these methods were not successful
in capturing any distinction between the segments of the
movements. Overall, this technique is useful for explasato
analysis of neural recordings without assumptions or model
formulation. However, since the method is stochastic tleg us

Fig. 3. The movement trajectories colored by the corresipgndeural
state’s location in the latent space. Similar colors forilsimmovements
indicate a useful latent space embedding. (Inset) Positiolatent space
defines the color of the corresponding movement. Each peaisd colored
coded by the average firing rate across all units (red beiachitphest and
dark blue the lowest ensemble firing). In the latent spacg e cluster
of points on the lower right are represented by yellow andespond to
the return movement, points on the upper center and rightegmesented
by light green or cyan and correspond to the reach movemémspoints
corresponding to the rest state spread across the remadhidbe latent
space.

(1]

(2]

(3]

To quantify the performance across more trials, we use
7 non-overlapping 300 s segments, since this is 3 timeg)
as many points we scale the perplexity 3-fold to 45, and
measure the movement predication (5) using the original
count data, the filtered count data, the latent space praduce
by t-SNE, and the first two components from principle [5]
component analysis (PCA). From Table I, the mean value of
~ indicates that the nearest-neighbor in the original spaee i
poor predictor, filtering the count data significantly ireses (6]
performance, and-SNE maintains most of the structure [7
in just two-dimensions, whereas the PCA projection is not
useful for prediction. -

IV. CONCLUSION

The results obtained using this method can provide ang]
answer to the question of whether similar movement traﬁo
jectories have similar neural representation. It does bRis ]
producing a visualization that maintains the neighborisood

is left with no explicit model for the embedding; thus, fuath
modeling that captures the structure seen in the visumlizat
is still required.
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