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ABSTRACT

Many practical data streams are typically composed of several
states known as regimes. In this paper, we invoke phase space recon-
struction methods from non-linear time series and dynamical sys-
tems for regime detection. But the data collected from sensors is
normally noisy, does not have constant amplitude and is sometimes
plagued by shifts in the mean. All these aspects make modeling even
more difficult. We propose a representation of the time series in the
phase space with a modified embedding, which is invariant to trans-
lation and scale. The features we use for regime detection are based
on comparing trajectory segments in the modified embedding space
with cross-correntropy, which is a generalized correlation function.
We apply our algorithm to non-linear oscillations, and compare its
performance with the standard time delay embedding.

Index Terms— Real time detection, time series embedding,
symbolic dynamics, correntropy

1. INTRODUCTION

In modern industrial operations, sensors monitor the state of the sys-
tem and analytical methods are applied to the streaming data to de-
tect a multitude of anomalous events and warn about impending fail-
ures. Detecting changes in the streaming data in real time is one of
the fundamental challenges in data stream processing [1]. For exam-
ple, in oil and gas applications, oil wells are equipped with thousands
of sensors and gauges to measure oil flow rates, pressure, and tem-
perature. Factors such as fluid composition, oil viscosity, compress-
ibility, and specific gravity of water induce tremendous variability
and produce varying flow regimes.

Fast detection of regime change of non-linear time series by
model based methods is difficult in an on-line setting due to their
reliance on computationally intensive mathematics [2]. Frequency
domain approaches fail as well because they require a window of
data to estimate spectral features that cause detection delays [3]. It
is also possible to extract time domain features from the time series
and make decisions based on their statistics. However, this method-
ology requires hand crafting by the user and fails when the time se-
ries statistics change [4]. On the other hand, attractor reconstruction
provides a model independent representation of the dynamics that
generate the time series [5]. An attractor is a set towards which a
system converges over time. In the reconstructed phase space, on-
line regime detection is achieved by comparing incoming trajectory
segments to the embedded training set. The comparison is made in
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the sense of a similarity measure that compares points in the trajec-
tory at corresponding times. In this paper we use correntropy, which
is a generalized correlation function [6].

In the following sections, we present the necessary background
on time series embeddings and describe the drawbacks in nonstation-
ary environments. We propose a modification of the traditional time
delay embedding to provide translation invariance. We further mod-
ify the embedding to provide scale invariance. We call this a “mod-
ified embedding” because the representation is no longer an embed-
ding in the strict mathematical sense. Cross-correntropy is intro-
duced, and we present an algorithm for regime detection in the mod-
ified embedding space. Finally, we demonstrate the performance of
the algorithm on non-linear oscillations.

2. BACKGROUND

An embedding is a map from anm-dimensional manifold to a (2m+
1)-dimensional Euclidean space, where every point on the original
manifold has a unique image in the higher dimensional space. Tak-
ens Embedding Theorem [7] provides a means of reconstructing the
phase space of a multi-dimensional dynamical system from the time
delays of a single series of measurements. Consider a discrete time
series with xn being the value at time n. Then, at each time n, we
can build a vector

x(n) = [xn, xn−τ , ..., xn−2mτ ],

where m is the embedding dimension and τ is the time delay. The
limit set of the trajectories (the attractor) is embedded in the mani-
fold on created by the x(n) values.

One typically determines the time delay by finding the first time
lag that produces a local minima in a dependence measure between
xn and xn−τ , such as autocorrelation or mutual information [8].
The selection of τ is flexible and chosen such that the components
of x(n) are not correlated. After the time-delay τ is fixed, the embed-
ding dimension m is estimated by algorithms such as Grassberger-
Procaccia, which approximates the correlation dimension [9]. The
time delay embedding preserves dynamical invariants such as en-
tropy, dimensional, and Lyapunov exponents [8], which are used to
analyze the underlying physical system.

In the case of regime detection, we are less concerned with the
properties of the system than with changes in the reconstructed tra-
jectories produced by noise, amplitude scaling and shifting means
in the input streaming data. One can normalize the data, but if the
data is time varying, these normalizations must be implemented on-
line in the test set. Instead of these preprocessing approaches that
are normally ad-hoc, this paper includes invariance to these aspects



directly in the embedding framework, with the advantage of fast on-
line operation and also of a sound mathematical foundation. The
goal of this paper is to provide a modified embedding space in which
the points x and ax + b are indistinguishable, where a is a scaling
factor, and b is the translation.

3. TRANSLATION INVARIANCE

Symbolic dynamics are used to provide accurate representations of
reconstructed attractors. In particular, encoding time delay embed-
ding vectors into symbols based on order patterns provides transla-
tion invariance [10]. In an m-dimensional space, each point maps
to one of m! order patterns. In applications, information loss is
substantial due to this encoding. For example, the Lorenz attrac-
tor which unfolds in 3 dimensions, has only 6 order patterns. We
propose a variant of the order patterns, called difference patterns. A
difference pattern, ∆x(n), at time n, is given by

∆x(n) = [xn − xn−2mτ , ..., xn−(2m−1)τ − xn−2mτ ].

where every component of x(n) is subtracted by the last com-
ponent. The last component of ∆x(n) will always be zero, so is
removed. Therefore, the original (2m + 1)-dimensional point in
the reconstructed phase space is mapped to a 2m-dimensional space.
This is analogous to establishing a quantitative order pattern with the
xn−2mτ component as a zero reference point. The translation invari-
ance in the space of order patterns is obvious. Let yn = xn − b, be
a translated time series.

∆y(n) = [yn − yn−2mτ , ..., yn−(2m−1)τ − yn−2mτ ]

= [(xn − b)− (xn−2mτ − b), ...]
= [xn − xn−2mτ , ...]

= ∆x(n)

Translating the time series does not alter the difference pattern. Sim-
ilarly to the differencing operation applied to nonstationary time se-
ries. However, this representation is no longer an embedding be-
cause it is not invertible.

4. SCALE INVARIANCE

To achieve scale invariance, we simply normalize the ∆x(n) vectors
by their Euclidean norms. The new vectors,

∆x̂(n) =
∆x(n)

||∆x(n)||
,

are the projections of the ∆x(n) onto the unit sphere in 2m-
dimensional space. Consider now a translated and scaled time
series yn = axn − b. First, we create the difference pattern.

∆y(n) = [axn − axn−2mτ , ...]

= a∆x(n)

Translation invariance still holds, but the scaling factors out of the
difference pattern, so it disappears when we normalize.

∆ŷ(n) =
∆y(n)

||∆y(n)||

=
a∆x(n)

a||∆x(n)||
= ∆x̂(n)

Effectively, this operation projects the trajectories onto the unit
sphere and destroys some of the distance information that was
present in the difference pattern attractor. In particular, all points
on a line extending from the origin will map to the same point on
the sphere. The modified embedding is, however, a useful depiction
of the time evolution of the system. The regime detection proposed
here will take advantage of the time structure of the trajectories
rather than static distance information.

5. DETECTION WITH CROSS-CORRENTROPY

Consider the discrete random processes {Xn1 : n1 ∈ N1} and
{Yn2 : n2 ∈ N2}, where N1 and N2 are time index sets. Then the
cross-correntropy function is

νx,y(n1, n2) = E[κ(xn1 , yn2)], (1)

whereE[·] is the expectation operator over the random processes and
κ is a continuous positive definite kernel function. The correntropy
function is a similarity measure between time series, that induces a
metric, the correntropy-induced metric (CIM) [2]. It is common to
use the Gaussian kernel, in which case (1) takes the form

νx,y;σ(n1, n2) = E[Gσ(||xn1 − yn2 ||)], (2)

where σ is the Gaussian bandwidth. Selection of the the kernel band-
width is an active area of research, but in our application, 0.5 ≤ σ ≤
1.5 worked well, because we are on a unit sphere with maximum
geodesic distance of π.

For the problem of regime detection, we consider trajectory seg-
ments of length N , which are finite realizations of the random pro-
cess. The expected value in (2) is replaced by the sample mean. The
cross-correntropy between trajectory segments has the range

0 < νx,y;σ(n1, n2) ≤ 1.

Consider the streaming time series at time n1. In the modified
embedding space, the trajectory segment formed from the previous
N points is

∆x̂ = [∆x̂(n1),∆x̂(n1−1), ...,∆x̂(n1−N+1)].

Similarly, the length N trajectory segment ending at time n2 in the
training set is

∆ŷ = [∆ŷ(n2),∆ŷ(n2−1), ...,∆ŷ(n2−N+1)].

The sample correntropy between these two trajectories is

ν̂(∆x̂,∆ŷ) =
1

N

N−1∑
i=0

Gσ(||∆x̂(n1−i) −∆ŷ(n2−i)||). (3)

In on-line streaming, we will calculate (3) for all length N tra-
jectory segments in the training set. If there exists a training segment
∆ŷ, such that ν̂(∆x̂,∆ŷ) ≈ 1, then the current sample xn1 is as-
signed to the desired regime.



The trajectories in the modified embedding space are on the sur-
face of a sphere. We replace the Euclidean distance in (3) with the
geodesic length on the sphere, to obtain a better depiction of the dis-
tance between points. All modified embedding space points are unit
vectors, so the dot product between two points is the cosine of the
angle between them. The geodesic length is therefore the arc cosine
of the dot product.

ν̂(∆x̂,∆ŷ) =
1

N

N−1∑
i=0

Gσ(acos(< ∆x̂(n1−i),∆ŷ(n2−i) >))

The method of regime detection based on cross-correntropy in
the proposed scale and translation invariant modified embedding
space is described in Algorithm 1.

Algorithm 1 On-line regime detection in the modified embedding
space with cross-correntropy

I. Embed training set y
Given a discrete time series {yn2 : 1 ≤ n2 ≤ L}
Select a time delay τ , and embedding dimension m
for i = (m− 1)τ + 1 to L do

y(i) = [yi, yi−τ , ..., yi−(m−1)τ ]

∆y(i) = [yi − yi−(m−1)τ , ..., yi−(m−2)τ − yi−(m−1)τ ]

∆ŷ(i) = ∆y(i)

||∆y(i)||
end for

II. Regime detection of streaming data x at time n1

Set desired trajectory length to N
Set Gaussian kernel bandwidth σ
Set threshold ε on cross-correntropy
x(n1) = [xn1 , xn1−τ , ..., xn1−(m−1)τ ]

∆x(n1) = [xn1 − xn1−(m−1)τ , ..., xn1−(m−2)τ − xn1−(m−1)τ ]

∆x̂(n1) = ∆x(n1)

||∆x(n1)||
for j = (m− 1)τ +N to L do
ν(j) = 1

N

∑N−1
k=0 Gσ(acos(< ∆x̂(n1−k),∆ŷ(j−k) >))

end for
if max ν > ε then

Sample xn1 is in the desired regime
end if

For simplicity, only the case of single regime detection is shown.
In the multi-regime case, one needs only to add further training sets
to the embedding space. Then incoming trajectory segments are
compared with the training sets of all regimes. The regime that pro-
duces the highest correntropy is selected.

6. RESULTS

We test the algorithm with a single desired regime of quasi-periodic
oscillations produced from a chaotic regime commonly observed in
the gas and oil industry. From the training set data (Fig. 1), mutual
information was used to select a time delay of 3 and the Grassberger-
Procaccia algorithm [9] revealed that the correlation dimension is
1.8. An embedding dimension of 4 sucessfully unfolded the attractor
in this case. The training set is real data that has been mean-centered.

To demonstrate the effectiveness of our algorithm, we compare
its performance with the standard time delay embedding. The em-
bedding parameters and detection procedure remain the same. We

Fig. 1. Example of the training set oscillation data. The total training
set length is 2500 samples.

set the segment length N = 10, and the kernel bandwidth σ = 0.9.
The first test case is seen in Fig. 2. This is also real data that has
been mean-centered. There are two oscillatory segments and a non-
oscillatory middle segment. As seen in Table 1, the standard em-
bedding slightly outperforms the modified embedding, which is ex-
pected because the use of distance as a discriminating characteristic
is impaired in the modified space.

Fig. 2. First data set. The test data is similar in mean and amplitude
to the training set. Algorithm 1 (top) performs slightly worse than
the standard embedding (bottom).

In the previous test, the standard embedding worked because
the training and testing data were similar in mean and scale. We
artificially scale and translate sections of the testing set, as seen in
Fig. 3, and perform a second test. We manually skew the test set so
that regime boundaries are precisely known.

In the second test, our algorithm greatly outperforms the stan-
dard embedding. In the modified space, there is no difference be-
tween the testing and training data aside from the sudden jumps be-
tween regimes.

Our method can detect dynamics before periodicity is evident.
We define the reaction time for a detector as the number of missed
detections following the onset of a regime (Fig. 4). Time-frequency
methods can also detect oscillations by identifying a strong spectral
component at the fundamental frequency. In an on-line setting, at
least one period of the oscillations must elapse to have meaning in
the frequency domain, which is too much delay in some applications.



Fig. 3. Second data set. The testing data contains scaled and trans-
lated versions of the oscillations. In this case, Algorithm 1 (top)
greatly outperforms the standard embedding (bottom).

Table 1. Error rate, true positive rate (TPR), and false positive rate
(FPR) for the two tests.

Embedding Error Rate TPR FPR
Test 1 (Fig. 2)

Modified 1.9% 98.4% 4.1%
Standard 0.8% 99.6% 3.7%

Test 2 (Fig. 3)
Modified 3.4% 96.5% 2.2%
Standard 65.7% 26.7% 3.0%

The segment length, N , offers the user control over the reaction
time of the detector. In Table 2, we represent the tradeoff between
reaction time and error rate. The test set is the same as in Fig. 2
and Algorithm 1 is again employed. The reaction time is determined
from the transition to the second oscillatory regime. For the N val-
ues tested, all reaction times were well less than the average oscilla-
tion period of about 30 samples.

Table 2. Tradeoff between reaction time and error rate as a function
of trajectory length.

Length N Reaction Time Error Rate
2 5 3.7%
4 8 2.5%
6 17 2.1%
8 17 1.7%
10 21 1.9%

7. CONCLUSIONS

The method presented in this paper is a simple way to achieve
on-line, multi-regime detection in a nonstationary environment.
Through two sequential modifications on the standard time delay
embedding, we achieved a representation of dynamics that is invari-
ant to constant scaling and translation. Cross-correntropy allows us

Fig. 4. Following the onset of oscillation, there are 4 missed detec-
tions, and therefore the detection delay is 4 samples.

to fully exploit the time structure of the trajectories, which sit on a
sphere in the modifed embedding space.

In the case of quasi-periodic oscillations, when there is no scal-
ing and translation between the training and testing sets, the modified
embedding was shown to perform similarly to the standard embed-
ding. When these two distortions are present, the modified embed-
ding is unaffected, while the standard embedding fails. Our method
has the benefit of short detector reaction time, relative to frequency
domain methods, which in general will fail for the first period of
oscillation.
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