
Nearest Neighbor Distributions for Imbalanced
Classification

Evan Kriminger
and José C. Prı́ncipe

Deparment of Electrical and Computer Engineering
University of Florida

Gainesville, Florida 32611–6200
Email: http://www.cnel.ufl.edu/

Choudur Lakshminarayan
HP Labs

Palo Alto, California
Email: Choudur.Lakshminarayan@hp.com

Abstract—The class imbalance problem is pervasive in machine
learning. To accurately classify the minority class, current meth-
ods rely on sampling schemes to close the gap between classes,
or on the application of error costs to create algorithms which
favor the minority class. Since the sampling schemes and costs
must be specified, these methods are highly dependent on the class
distributions present in the training set. This makes them difficult
to apply in settings where the level of imbalance changes, such
as in online streaming data. Often they cannot handle multi-class
problems. We present a novel single-class algorithm called Class
Conditional Nearest Neighbor Distribution (CCNND), which
mitigates the effects of class imbalance through local geometric
structure in the data. Our algorithm can be applied seamlessly
to problems with any level of imbalance or number of classes,
and new examples are simply added to the training set. We show
that it performs as well as or better than top sampling and cost-
weighting methods on four imbalanced datasets from the UCI
Machine Learning Repository, and then apply it to streaming
data from the oil and gas industry alongside a modified nearest
neighbor algorithm. Our algorithm’s competitive performance
relative to the state-of-the-art, coupled with its extremely simple
implementation and automatic adjustment for minority classes,
demonstrates that it is worth further study.

I. INTRODUCTION

The performance of traditional classification methods is
prone to deterioration when presented with significant class
imbalance. Class imbalance occurs when the instances of one
class are far less in number than the instances of another class.
The class imbalance may refer to a relative imbalance, with
class instance ratios on the order of 100 to 1, 1000 to 1, or
even higher. However, it is often the case that the minority
class has very few instances, so algorithms have to account
both for relative imbalance and sparsity of instances in the
minority class.

Class imbalance has attracted considerable attention in
recent years. There have been various workshops, conferences,
and special issues that have addressed the problem to sum-
marize the vast array of emerging techniques, performance
evaluation methods, and to point out important directions
for research effort. This attention is well warranted as class
imbalances are present in many real-world applications, in-
cluding fraud/intrustion detection, anomaly detection, medical
diagnosis [1]. In these fields, class imbalance is inherent, how-
ever imbalances may arise in any experiment where the class

distribution is not explicitly controlled during data collection.
Often it is the minority event which is so critical to detect. For
instance, in a medical test, there will typically be significantly
more “negative” than “positive” instances. Due to the scarcity
of the positive class, a classifier which favors the negative
class will produce an overall low error rate. However, false
negatives are potentially catastrophic, while false positives
simply warrant more testing. Thus it is clear that providing fair
classification with respect to minority classes must be stressed.

Most of the methods designed to handle class imbalance
fall into one of two categories: sampling methods and cost-
sensitive methods [2]. Sampling methods operate on the data
itself, attempting to reduce the imbalance between classes,
by oversampling the minority class and/or undersampling the
majority class. Cost-sensitive methods apply more weight to
errors made on the minority class and may be applied to the
data or incorporated into the classification algorithms them-
selves. For a review of the state-of-the-art in class imbalance
methods, see [2].

Both sampling and cost-sensitive methods are tuned, either
through the amount of sampling or through the relative costs
assigned to each class, to provide the desired balance between
classes. A third class of methods, which can be considered
single-class classifiers consider whether or not to include an
unlabeled sample into each class individually, rather than com-
paring to inter-class boundaries. Single-class methods are used
extensively in anomaly detection, a field in which anomalies
provide classes with few training examples [3]. Often these
methods are useful in practice, since they easily tune to the
degree of imbalance present in the training set. In many
applications, the degree of imbalance will change, particularly
when classifying online streaming data [2]. We propose the
Class Conditional Nearest Neighbor Distribution (CCNND)
algorithm, which naturally adjusts to any level of imbalance
which may be present and boosts the performance with respect
to the minority class. Furthermore, it is easily extended to the
multiclass case.

This paper is arranged as follows: In Section II we describe
our algorithm and provide some justification for its use. In
Section III we demonstrate its performance on UCI datasets,
which serve as benchmarks problems for binary, imbalanced

classification, and compare to a few popular methods re-
spresenting the techniques of sampling and cost-sensitivity.
Finally, in Section IV we show how our method compares
to the standard kNN classifier and a modified kNN classifier
called the Neighbor-Weighted k-Nearest Neighbor (NWKNN)
algorithm [4], in an online streaming data setting consisting of
real-world, imbalanced, multi-class data from the oil industry.

II. CLASS CONDITIONAL NEAREST NEIGHBOR
DISTRIBUTION

A. Motivation

We present the Class Conditional Nearest Neighbor Distri-
bution (CCNND) algorithm, which uses the structure of the
data itself to discern and account for the imbalance in the
data set. Class imbalance methods attempt to account for the
disadvantage that the minority class faces in classification.
Essentially, class imbalance methods push the classification
boundary futher from the minority class, which increases
the rate of true positives. We propose that an acceptable
boundary need not be found through trial and error or expert
knowledge. Rather we can extract a boundary which maintains
high sensitivity to the positive class, directly from the data.

The boundary should be based on the variability that is to be
expected when the class is populated by future examples. We
represent the variability with the nearest neighbor distances.
When a class has few representative samples, it is likely that
these samples will be further apart than the samples of a more
populated class, drawn from the same distribution. Likewise,
when a class is well represented, the neighbor distances will be
smaller. Therefore, the location of the classification boundary
can be determined from the relative distance properties of each
class.

Traditional methods, such as kNN, classify a sample by
comparing its distances to each class directly. Nearest neighbor
distances should not be compared directly because this places
a boundary equidistant between samples of different classes,
even if one class is much more likely to exceed this boundary
in the future. In the presence of class imbalance, the majority
class dominates a boundary that relies on equal weighting
of distances. In order to compare nearest neighbor distances,
we therefore consider them relative to the distances that are
present amongst the instances of a given training set. This
approach provides an empirical measure of how likely it is to
see a new sample with certain nearest neighbor distances from
a class, given the distribution of the existing distances for that
class.

B. Method

Consider the training set C := {Ci}L1 , where Ci is class i,
consisting of Ni data points x ∈ Rm. Let k be the number of
neighbors which will be evaluated, as selected by the user.
For each sample, let di(x) represent the vector consisting
of the distances of x to its k nearest neighbors in class i
(not including the distance of x to itself). For each class i,
for all x ∈ Ci, we calculate di(x), and build the empirical

Fig. 1. Classification boundaries of CCNND with k = 1, 1-nearest neighbor,
and a support vector machine classifier on a synthetic imbalanced dataset. The
majority class consists of 100 samples uniformly distributed on the left half
of the plane at x = 0.5. The minority class is made up of only 5 samples
from a uniform distribution on the right side. The true boundary is along
the dividing plane. The 1-NN and SVM classifiers place a boundary which
favors the majority class. The CCNND boundary nearly approximates the true
boundary.

CDF (cumulative distribution function) of nearest neighbor
distances for class i.

When presented with an unlabeled testing sample, xtest,
for each class i, we calculate di(xtest). Using the empirical
CDF of nearest neighbor distances for class i, we calculate
the probability, pi(xtest), that a point with nearest neighbor
distance di(xtest) would belong to that class, i.e. the proba-
bility that the nearest neighbor distances within a given class
from training are greater than the nearest neighbor distances
of the test point to the training set for that class.

For class i, consider the set of points in i, such that the
nearest neighbor distances are pointwise-less than the nearest
neighbor distances of the test point,

Si := {xj | di(xtest) < di(xj) for xj ∈ Ci}.

The probability, pi(xtest), may be computed

pi(xtest) =
|Si|
|Ci|

,

where | · | is the set cardinality operator. The decision rule for
assigning a label to xtest is

labeltest = argmax
i∈[1...L]

pi(xtest).

We would not be able to compare nearest neighbor distances
in this way because of the explicit bias given to the majority
class. Since we work with the probability of finding a nearest
neighbor farther than the nearest neighbor of the test sample,
this comparison is possible and provides adjustment to imbal-
ance. Figure 1 provides a synthetic example demonstrating the

TABLE I
NUMBER OF POSITIVE AND NEGATIVE INSTANCES PRESENT IN EACH

DATASET.

Dataset (pos. class) Pos. Instances Neg. Instances
Abalone (19) 32 4145

Glass (7) 29 185
Letter (26) 734 19266

Segment (1) 330 1980

ability of CCNND to handle extreme imbalance by creating
a decision boundary based on the distance properties of
the samples that have been observed, while kNN and SVM
classifiers fail.

Selection of the number of neighbors, k, is similar as
for kNN. From our experimental studies, small values of k
(between 1 and 3), performed best due to the fact that the
minority class has few samples to represent large areas of
feature space.

III. COMPARISON WITH SDC

To evaluate CCNND we compare it with successful rep-
resentatives of the sampling and cost-sensitive approaches to
imbalanced classification. Synthetic Minority Over-sampling
Technique (SMOTE) [5] is a popular sampling algorithm,
which was combined with a cost-sensitive approach in the
SMOTE with Different Costs (SDC) [6] algorithm. SDC
offers the benefits of both sampling and cost-sensitive ap-
proaches and has been shown [6] to outperform under-
sampling, SMOTE, and Different Error Costs [7] which is a
cost-sensitive method. We compare to SDC, SVM, and random
undersampling, repeating those results of [6] for convenience.

SDC was tested on 10 datasets from the UCI Machine
Learning Repository [8]. We focus on the 4 out of these
10 datasets with numerical attributes and no missing data
because preprocessing methods to account for missing data
and categorical variables were not specified. These are the
Abalone, Glass Identification, Letter Recognition, and Image
Segmentation datasets. These datasets represent various de-
grees of imbalance and dimensionality of the feature space.
While these problems have multiple classes, in accordance
with [6], we single out one of these classes as the “positive”
class and combine the others together to form the “negative”
class. In Table I, we show the degree of imbalance present in
each dataset and the class which represents our minority class.

The ratio of training to testing data is 7 to 3, with these
sets being selected randomly. However, the class ratios were
kept the same in both the training and testing sets. The results
were averaged over 100 trials. Each column of the feature
vectors was normalized to 1 for the benefit of kNN. The value
of k which produced the best results is shown, although no
value showed substantially lower performance. The results are
shown in Table II. Three measures of performance are used:
sensitivity (acc+), which is the ratio of correct detections of
the positive class to the total number of positive examples,
specificity (acc−), which is the ratio of the correct detection

Fig. 2. Normal behavior (top) and the two oscillatory classes which indicate
the onset of slugging and churn (middle and bottom).

of the negative class to the total number of negative examples,
and the g-means metric [9], which is defined as

g =
√

(acc+)(acc−).

The performance of CCNND is comparable to SDC and
shows improvement in terms of g-means in 3 out of the 4
datasets. Both methods greatly outperform a standard SVM
and random undersampling. There is a large increase in the
sensitivity with CCNND on the Abalone and Glass datasets,
demonstrating ability of CCNND to maintain a high true
positive rate, while still limiting the number of false positives
to within an acceptable range. Unlike SDC, which requires
optimization of costs as well as oversampling of the minority
classes, CCNND requires only evaluation of nearest neighbor
distances.

IV. ONLINE STREAMING DATA APPLICATION: OIL
FLOW-RATE

A. Data Description

We tested CCNND on a multi-class dataset derived from a
real time series of oil flow rates from sensors placed in a bore-
well. In this example, the measurements are from a single well,
recorded by a single sensor at 30 second intervals located at
the surface of the sea. The detector must label each new data
point that streams in as being in normal operation or to flag the
onset of hazardous conditions, known as slugging and churn.
The conditions for slugging and churn may be recognized
in flow rate data by segments consisting of large amplitude,
triangular oscillations, or of smaller oscillations superimposed
on normal behavior. Example segments of normal behavior,
high amplitude oscillation, and low amplitude oscillation are
seen in Figure 2. It is important to quickly identify the two
oscillatory behaviors that lead to slugging and churn so that
appropriate actions may be taken to control it.

TABLE II
A PERFORMANCE COMPARISON CCNND, SDC, US, AND SVM ON FOUR UCI DATASETS. FOR THREE OF THESE DATASETS CCNND SCORES HIGHER

THAN SDC IN TERMS OF THE G-MEANS METRIC AND SENSITIVITY. BOTH METHODS WELL OUTPERFORM US AND SVM.

CCNND SDC US SVM
Sens. Spec. g-means k Sens. Spec. g-means Sens. Spec. g-means Sens. Spec. g-means

Abal. 0.880 0.633 0.7462 2 0.808 0.687 0.7449 0.778 0.533 0.6436 0.889 0.732 0

Glas. 0.956 0.900 0.9274 2 0.808 1 0.9405 0.875 0.885 0.8801 0.75 1 0.8660

Lett. 0.978 0.999 0.9884 2 0.997 0.966 0.9817 0.996 0.917 0.9555 0.67 1 0.8183

Seg. 0.969 0.999 0.9835 1 0.959 0.998 0.9783 0.99 0.993 0.9918 0.99 1 0.9950

TABLE III
PERFORMANCE RESULTS OF CCNND, NWKNN, AND KNN ON THE OIL FLOW RATE DATASET. EACH TABLE IS A CONFUSION MATRIX, WITH THE ROWS

REPRESENTING THE TRUE CLASS, AND THE COLUMNS REPRESENTING THE CLASS ASSIGNED BY EACH RESPECTIVE METHOD. WHILE NWKNN
IMPROVES SIGNIFICANTLY ON KNN, CCNND PERFORMS BETTER ON THE MINORITY CLASSES AND IN TERMS OF OVERALL ERROR RATE.

(a) CCNND, k = 1, Error rate = 0.101

Class 1 Class 2 Class 3

Class 1 0.789 0.073 0.138

Class 2 0.011 0.984 0.005

Class 3 0.076 0.001 0.923

(b) NWKNN, k = 8, c = 2.5, Error rate =
0.185

Class 1 Class 2 Class 3

Class 1 0.950 0.011 0.039

Class 2 0.000 0.842 0.158

Class 3 0.326 0.120 0.654

(c) kNN, k = 1, Error rate = 0.370

Class 1 Class 2 Class 3

Class 1 0.998 0.000 0.002

Class 2 0.002 0.727 0.371

Class 3 0.705 0.135 0.165

Classifiers that function in a streaming environment must
be able to handle the appearance and disappearance of classes
as conditions change and thus adapt to changing degrees
of imbalance. Therefore, it is important that the classifier
not depend on joint information between classes, so that the
classifier can be updated by adding new data points, rather
than completely retraining. The simple implementation and
modular design of CCNND lends itself to streaming data
applications.

B. Comparison to NWKNN and kNN

We compare CCNND to the Neighbor-Weighted k-Nearest
Neighbor (NWKNN) algorithm of Tan [4], and to the standard
kNN algorithm. NWKNN is a modification of kNN, in which
a weight is computed for the distances of each class based
on the ratio of the class population to the minority class. The
weight for class i is,

wi =

(
minj=1,...,L Nj

Ni

) 1
c

,

where c > 1 is a tunable parameter. If kNNC(xtest) represents
the k nearest neighbors of xtest, and we define

Xi := {x |x ∈ Ci and x ∈ kNNC(xtest)},

then the score of class i is defined to be

score(i,xtest) = wi

∑
x∈Xi

sim(xtest,x),

where sim(·) is a similarity measure. The test sample is given
the label of the class with the highest score. By providing
the weighting factor, the neighbors from minority classes
contribute more to the score.

Each sample of the time series contributed a feature vectors
consisting of a 6-dimensional vector consisting of the sam-
ple and the previous samples with time lags of 4 between
them. Appended to the time embedding vector was a scalar
representing the signal power in a window of 16 samples
previous to the current sample. The training set consists of
1500 samples from normal behavior (Class 1), 50 from high
amplitude oscillation (Class 2), and 10 from low amplitude
oscillation (Class 3). The testing set consisted of 500 samples
from each class. For CCNND and kNN, k = 1. For NWKNN,
k = 8 and c = 2.5. The results, averaged over 100 trials, are
seen in Table III.

V. CONCLUSION

We have presented the Class Conditional Nearest Neighbor
Distribution (CCNND) algorithm, which accounts for class
imbalances without the need to set tuning parameters. CC-
NND maintains high sensitivity to the minority class, while
still providing high overall performance in comparison with
popular methods. This feature is important in fields where false
negatives can be damaging. CCNND is extremely simple to
implement and to adapt to changes in imbalance. It is therefore
very applicable in settings, such as in online streaming data.
We have tested CCNND on UCI datasets and shown that
the performance of CCNND is comparable to the state-of-

the-art. The ability of CCNND to handle real-world, multi-
class data was then demonstrated on oil pipeline data for the
detection of dangerous slugging and churn behavior. In an
imbalanced setting, CCNND greatly outperforms kNN, which
fails to maintain high sensitivity to the minority class. CCNND
also outperforms a similar single-class method, NWKNN, in
this example. This paper has shown that the local geometric
structure of a dataset provides insight into the variability that
can be expected from future observations.

REFERENCES

[1] N. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: special issue on learn-
ing from imbalanced data sets,” ACM SIGKDD Explorations Newsletter,
vol. 6, no. 1, pp. 1–6, 2004.

[2] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transac-
tions on Knowledge and Data Engineering, pp. 1263–1284, 2008.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, 2009.

[4] S. Tan, “Neighbor-weighted k-nearest neighbor for unbalanced text cor-
pus,” Expert Syst. Appl., vol. 28, no. 4, pp. 667–671, 2005.

[5] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of Artificial Intelligence Re-
search, vol. 16, no. 1, pp. 321–357, 2002.

[6] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” Machine Learning: ECML 2004, pp.
39–50, 2004.

[7] K. Veropoulos, C. Campbell, and N. Cristianini, “Controlling the sensi-
tivity of support vector machines,” in Proceedings of the international
joint conference on AI. Citeseer, 1999.

[8] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[9] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: one-sided selection,” in Machine Learning - Int. Workshop then Conf.
Citeseer, 1997, pp. 179–186.

