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Abstract— Modern industrial applications such as the smart
grid and oil and gas are continuously monitored. The massive

amounts of data collected is then processed, and analyzed to

generate actions to ensure smooth operations to positiveignpact
the bottom line. In the oil and gas industry, modern oil rigs ae
outfitted with thousands of sensors to measure the flow rates,
as well as the physical and chemical characteristics that &dfct
production from underground off-shore and on-shore reseroirs.
Analytical methods packaged into a surveillance system and
applied to the massive network of sensors track the state ohe
system and issue warning alerts about impending failures.n this
setting, real time algorithms are needed to detect a diversi of
event types, such as anomalies, trends or forewarn failurevents
to generate alerts for proactive engineering actions. In tfs paper,
effective online algorithms drawn from the signal processig
and statistics literature are applied to quickly detect ananalies,
trends, and turbulence in the flow of oil in the bore well whichis
typical in oil production. The short time Fourier transform and
dynamical systems were utilized to uncover structure in thelata
to apply methods based on local derivatives and estimationdsed
on linear and non-linear methods. We compare the performane
of the algorithms and make suitable recommendations for thie
application. Furthermore We apply non-linear time series nodels
such as kernel adaptive filters for prediction purposes and
compare their performance against standard linear methodsuch
as the least mean square algorithm. Extensive experimentse
conducted over a variety of stream patterns showing that our
methods perform well both in terms of accuracy of detection
and the short latency in the decision.

|I. INTRODUCTION

equipped with thousands of sensors and gauges to measure
various physical and chemical characteristics of oil and ga
-from rock formations in the sea bed that contain depodits- t
distribution systems. Continuous streams of sensor rgadin
can be harnessed via analytical methods to paint a picture
depicting the various stages of oil production.

Upon drilling to tap the oil deposits, the bore well is
managed to yield maximum capacity. Several aspects come
into play that introduce tremendous variability into theopr
duction process. Some factors that play a role are: fluid
composition, oil viscosity, compressibility, specific wgitg,
specific gravity of water, solids, and others. These aspzots
produce varying flow regimes. Two common occurrences in oil
production that cause disruptions to flow rates ategging
and churn. Slugging relates to turbulent flows where gas
bubbles coalesce, expand, and collapse continuously.gékan
in fluid composition from wholly liquid to wholly gaseous ave
time periods leads to churn which is a major cause of flow
rates disruption. Detecting Some common flow rate patterns
are 1. high amplitude, high oscillation, 2. low amplitudagh
oscillation, 3. low oscillation with pseudo-periodic beha,

4. normal flow rate followed by a jump, and anomalous flows
that are some combination of (1-4). Figure 1 shows examples
of the variation of the flow on four different time periods.

The supply of easily reachable and refinable petroleum

is finite, which motivates producers to extract as much as
possible from a given well. Ideally, production should flow
24/7 all year round. Any interruptions to the flow can result
in lost income in the millions of dollars. Equipment can be
highly specialized, or even custom manufactured for a sae,
repair and replacement is expensive. This is particulatlg t
of offshore assets. Demographics of the skilled labor suppl
are shifting unfavorably for the industry. Production may b
located in a remote area,; offshore, or in an extremely hdd, co
or even dangerous area. For all the reasons cited, it isalriti
for the oil drilling and production industry to build autoted
surveillance systems that monitor various stages of pitiatuc

and aid the employees (operators) on the platform to ensgg 1. Measurements on 4 different days. Left plots presenoscillatory
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production with few interruptions [1]. Modern oil fields arebehavior. The time axis is in hours for all 4 plots.




The most important variable in oil and gas production iselationship between the frequencies and time over whieh th
the flow rate. Higher flow rates with fewer disruptions, résutlata is analyzed. In other words bandwidth is a global charac
in greater yields. Therefore all our experiments are based tristic of the function. To overcome this deficiency, théiom
the flow rate variable. Due to the multiplicity of factorsexit of Windowed Fourier transform was introduced to determine
in the introduction, flow rates along a bore well tend to blecal bandwidth by analyzing the data over windows. This
oscillatory. Controlling the high frequency oscillatioch(uirn) is the motivation underlying the short time Fourier tramsfo
is critical and so, We focus on early detection and predictidSTFT). The STFT involves computing Fourier coefficients

of churn in flow rates. over windows of the time series. Figure 3(b) shows spec-
trogram of the flow rates on one of the days. The spectrogram
Il. DATA DESCRIPTION is merely a plot of time (horizontal axis) and frequencies

The oscillations in the flow rates demonstrate a slew éyertical axis) with a third dimension which is simply the
behaviors that include high oscillation - high amplitudigth Magnitude of the Fourier coefficients over the winddit.
oscillation - low amplitude, low oscillation, linearityjston- This enables us to grasp the frequency components withi tim
tinuities. When the high oscillation segment (Figure 2) i9indows. Notice that the major transitions in the regimes ca
examined carefully, it resembles a triangular oscillatiBat Pe observed by the white vertical plumes. While the STFT
there may be a hidden periodic structure of the time seriBEovides a mechanism to analyze frequencies over time, We
that is varying over time. This quasi-periodic phenomeram cfound that it is limited by the conflict betweeime-frequency
be extracted by frequency domain methods. Although, flo\Rcalization. The Heisenberg uncertainty principle states that
rate time-series is quasi-periodic; it is a narrow band afigriime and frequency resolutions are inversely related tegath
nonetheless. In contrast, the non-oscillatory regions do rihe condition where analyzing a signal over longer windows
have any discernible structure. Furthermore, differetitaats compromises frequency resolution and vice-versa [2]. Also
appear in the data, such as missing values, sudden dropdtée STFT implementation the window size is fixed which
zero value or clipping of the signal due to sensor malfumgtiolimits the frequency range. A description of the analysid an

or S|mp|y the sensor being turned off due to a preventi\@tection of the flow rate Signal is giVen in the section on
maintenance event. Short Time Fourier Transform. As We cannot uncover the
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Fig. 2. Original data series in the oscillatory regime (ajigiDal data series

i(rg)the Non-oscillatory regime (b). Frequency magnitudecspeof (a) and Fig. 3. (a) The original flow rate time series and (b) specagof the time
. series.

In order to fully comprehend the signal, We broke the timeéme varying periodicities in the time-series data, anrakéive
series into its oscillatory and non-oscillatory segmehtsns  approach based on dynamical systems was invoked to unravel
in Figure 2. It is clear that the flow rates aperiodic in the time-varying periodic structure in the oscillatory semts
the oscillatory regions. Examining the time series cahgful of the data. In addition to the time-frequency spectrum Fégu
it is suspected that there are different regions of varyirg(a) and (b), We examine the behavior of the oscillations
frequencies. This suspected periodic structure in the flolwy considering the underlying dynamical system which may
rate signal made a case for examining the time-series Viave been generated the time series. The dynamical system
frequency domain methods. Fourier analysis is the main-sta regulated by a set of parameters, and their evolution over
of frequency domain analysis. In classical Fourier analystime is known as thghase space of the process. The quasi-
bandwidth is defined in relation to the Fourier transformperiodic regime is conceivably produced by a well organized
Bandwidth is simply a measure of the range of frequenciatiractor. An attractor in the parlance of dynamical systems
(spectrum) usually measured in Hertz. The Fourier transfois a set towards which the process converges over time. A
of a function f(¢t) gives a view of the signature of the dataletector based on this approach should be able to idensfy th
known as the frequency spectrum, but it completely masks theasi-periodic region by an attractor. Although We do nekha



Determine Time Delay for Embedding

access directly to the phase space of the original dynamical 1200
system We can still study the properties of attractors in a
reconstructed phase space using Takens’ time delay enmgeddi 1ooor
theorem [3]. Takens’ theorem reconstructs the phase space
with m-dimensional vectors whose components are sampled
from the univariate time series with a time spacing\df. The
parametersn andAT are known as the embedding dimension
and time delay, respectively.
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Both of these parameters are estimated by using segments 20l
of the flow-rate data that is known to contain oscillations. e
The parameter, time delaz\T, should be chosen such that % s 10 15 2 2 %

T (delay)

components of the time delay vector are minimally correlate
It is common practice to find the mutual information betwee i i . . )

B . . . . g. 4. Selection of time delay using mutual information adependency
a time series and time series delayedAy, as a function of measure. The arrow denotes the value chad@n= 3
AT, and choose the time delay that produces the first local
minimum in mutual information, see Figure 4. The embedding
dimensionymn is larger than the expectedrrelation dimension
of the attractor so that the time series is fully unfoldedint
phase space. The correlation dimension is a measure of the
dimensionality of the space occupied by a set of points.

Determine Correlation Dimension with Grassberger—Procaccia Algorithm
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The correlation dimension can be estimated using the
Grassberger-Procaccia algorithm [4]. In this algorithm We
calculate the correlation sundj(r), which is the fraction of
pairs of points that are within a distaneeof each other.
In D dimensional space, as decreases(C(r) will die off -asp”
proportional tor?, and thereforeD = lim,_, l‘i’fg’f. Plotting 4 s e =g o2 6 07 o7 08 65 1
log C(r) vs. logr reveals a linear relationship with slope pon (ered)
equalling D for small », as seen in Figure 5. In practice, o o , o

. . Fig. 5. Determination of the correlation dimensiab, which is the slope
with finite data the curve levels off for smallbecause each ,¢e jinear section before the plot levels off.
point is the only one in its neighborhood of raditusThese

guantities can be used in generating the recurrence plathwh

consists of a matrix of all the pairwise distances between thhase space, which provided an estimate of the embedding
different vectors generated considering the lag and embegdddimension. The estimate of the embedding dimension allowed
dimension. Figure 6 shows an example for a purely quasis to select the order (number of lags) of the linear model to
oscillatory segment. In this case only distances less tv@n fapproximate the flow rate time-series. The Least Mean Square
are shown as black wiggles. The embedding dimension vec{ps) was fit to the data. LMS is an iterative version of
is of size 5 (it is only required that the embedding dimensidfdinary least squares. The linearity assumption of LMS was
be larger than the correlation dimension) ah@ equal to 3. |imiting and it failed to capture the oscillatory behavidio

Both axis correspond to time values, they denote the startisvercome the deficiency, We resorted to a non-linear maglelin
point of each vector created using the paramet®?s and approach known as the kernel least mean square (KLMS)
m. Therefore We are actually comparing different segmenigethod. While it was able to detect the oscillatory and non-
of the time series. As We move along the first row elemengscillatory regimes successfully, due to the non-statipna
whose value is 1 denote future pieces of the time signal thsdhavior of the non-oscillatory part of the signal, its iewpl

are similar to the first segment. This can be interpreted asy@ntation resulted in numerous false alarms. In order toaed
periodic trajectory in the phase space. Therefore thertista these errors, We developed non-parametric ad-hoc methods,
between consecutive diagonals represents an estimatee of findcrafted for the modeling of a time series interspersgd w
period. Figure 6 shows a specific window of the recurrenggcillatory and non-oscillatory regimes. These methogede

plot, in this case the distance between the diagonal linesoi§ the notion of thdocal derivative. The descriptions of the
changing with time, which represents shifts in the period @hethods are outlined in the sections medictive approaches

the signal. andlocal time and amplitude features.

Thus the recurrence plot in Figure 6 resolves the resolution
problem encountered with the STFT and allowed us to capture
finer details, such as the time varying periodicities in tal As We outlined in the section on data description, We ap-
rate signal. Also, the dynamical systems approach allovged plied the STFT to achieve time-frequency localization idesr
to characterize the time series in terms of the reconsuducte separate the flow-rate regimes. This is achieved by bmgaki

log(C) (log correlation sum)
i

Ill. SHORT TIME FOURIER TRANSFORM



the classical Fourier type analysis of signal charactdora

10 : 09 and detection, and to resolve the time-frequency locétinat

- 08 conflict, We will introduce in the next section, predictive

o0 07 approaches to detection, motivated by our results from the

500 0s dynamical systems techniques.
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500 03 While the oscillatory part of the data is quasi-periodic,

BN 02 the non-oscillatory part consists of jumps, irregulasifieow

1100 01 amplitude oscillations, and variety of other behaviors. We
0 began by modeling the time-series oscillations by a linear
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model such that a change in the flow regime can be detected
by tracking the prediction error. The coefficients of thesén
giig]-eg-sionRoeng”ence plot using a delay of 3 samples and an efiied model were determined by minimizing the mean squared error
' (MSE). An on-line method finds the optimal solution by using
gradient descent which is a simple iterative version of the
least squares estimation. This algorithm is popularly kmow
the time-series into contiguous windows. We compute tlas the Least Mean Squares (LMS) [6]. Assuming a stationary
Fourier coefficients in each window and choose the Fouriprocess, the optimal coefficients are given by the Wiener
coefficient with largest magnitude over each window as ouomethod. These are obtained by solving a linear system irsterm
classification feature. This is a reasonable approach kecaaf the correlation matrix of the input and the cross-cotreta
the larger Fourier coefficients are highly correlated to tHmetween the input and predicted value. The drawback of this
signal. This result can be derived on the basis of the Pdisevanethod is that it is restricted to stationary time series and
identity [5]. The window slides through the time series knear models.
each shifted by one time unit-producing one feature valueAlthough the algorithm is simple and straight forward to
over every window. Note that the window only considers pashplement, the linear assumption is limiting. The modelgloe
values. Since flow rate consists of two regions (oscillatrgt not capture the time varying periodicities in the time serie
non-oscillatory),We compute the empirical probabilitndity Therefore a linear relation between the past values and the
functions (EPDF) over the two regions relative to the featufuture no longer holds. Therefore, to model the time selkiés,
variable. The empirical densities are computed fromtthi- applied kernel adaptive filter (KAF) [7] in order to overcome
ing data. The training data is simply the flow rates consistinthe linearity model assumptions. The KAF models involve a
of oscillatory and non-oscillatory regimes from our setafir nonlinear mapping from the input space to what is known as
flow rates segmented by day collected from a certain oil well. feature space. The mapping is produced by means of the
A decision is made on any new valug,.,, by comparing the kernel function. It allows us to apply linear techniquesthie t
likelihood of the sample belonging to either the oscillgtor feature space, whose solution would have required nomsine
non- oscillatory regions denoted respectively®yor R;. The methods in the input space. In this setting, We use an extensi
empirical probability density function for each region gieen to the LMS filter known as kernel LMS (KLMS) which is a
by; f(a:new|R1) andf(xnew|R2). The empirical densities aremember of the kernel adaptive family of filters [8]. The key
simply non-parametric density estimates obtained by apgly idea is that the coefficient vector and the input vector ngéon
the kernel smoothing density estimator to a set of discrdte in the input space, but rather are projected into an itfini
pointsz; ;, ¢« = 1,2,...,n andj = 1,2. The subscripts; dimensional space by the use of the kernel. For more detailed
and j index the number of points, and the class conditiontteatment of kernel adaptive filters refer to [7]. Althougte W
densities. A new observatiar,.,, is classified intaR;, if the designed non-linear filters using basic linear techniques i
class conditional probability Off(xnewlRl) is greater than the feature space, it introduces additional costs. Theekern
f(xnew|R2). This approach is sensitive to the length of th&s a bi-variate function which projects original sampletoin
window. For example a small window size will only providea new feature space, usually chosen to be of a much higher
frequency features that describe the rising and fallingeeafg dimension since it simplifies the problem to the linear case.
the quasi triangular wave in the oscillations. This will@alsUpon projecting the samples to a higher dimensional sphee, t
produce a number of false alarms since We are only sensita@efficient vector is a linear combination of the input serie
to linear behavior. A larger window near the period of th&hus, KLMS requires storing the input series, in order to
triangular wave would reduce the number of false alarnmbtain the coefficient vector.
because, We are covering the range of frequencies over th@he details of the application of KLMS filter are presented
period of the signal. A detailed analysis of the performande [7]. In contrast to the LMS algorithm, the KLMS specif-
of STFT and other methods given in section VII. Figure 1lically captured the structure of the oscillation and theref
shows the Receiver operating characteristic curves (ROC) the sample prediction error could be used to determine the
the short time Fourier and other methods. Departing froswitching between the oscillatory and non-oscillatoryimegs



(Figure 7). The KLMS approach was applied to time serighe threshold. Moreover, We can also use peak-to-peak
consisting of two states; oscillatory and non-oscillatdry heights as another discriminatory feature variable. Thghte
this case, it was able to detect the transitions from the tvad the it peak will be denoted(P;) and the height between
states successfully. Currently, We are conducting expamm peaks isAh(P;) = h(P;) — h(P;—1). As seen in Figure 13(c),
to test its applicability to other types of signals. In thead the classes have greater separation in this feature variabl
formulation of the KAF, We used a Gaussian kernel witthereby lowering the chances of misclassification. When We
variance equal to 5, a step size of 0.9, and an input vectdassify apeak-to-peak feature, We classify all of the samples
size of 15, which was approximately half the period. A rangeetween peaks to the same class. This grouping of sample
of values were tested but these settings gave us the belsresciassifications offers robustness over the sample-by-Eamp
approach, since oscillatory behavior is persistent onee tbut
it requires constant amplitude. Obviously, these two fesstu
can be combined to create a two dimensional discriminant
| feature vector. We propose a simple on-line algorithm tectet
el | local extrema and classify based on their features, detdea
- - -KLMS in Algorithm 1.

N

amplitude
o

U
N

Normalized

200 400 600 800 1000

o

Algorithm 1 On-line classification based on peak features
Given time series, with N samples

2 ‘ - _ !
i . . L = window length for peak detection
01(. “G\AJ\,(; -spomiges _h-,‘*rf,v!c‘m.rw-t\y-'ﬂwy‘y Require: L odd
..... L 1
-1r 4 ] a=

0 200 400 600 800 1000 Y = {yj = (At(P;), Ah(P;)|j is the index of feature pairs

S, I
e in the training se}t

: . - . . Setd = threshold onAhL(P)|
Fig. 7. Using the prediction error from Linear and non-lineaodels to .
detect oscillations. =0
forn=a+1t0o N —ado

Wp = 5,_4 tO Sn+ta

ERROR: (desnred output)

V. LoCAL TIME AND AMPLITUDE FEATURES if s, == max(Vp) or s, == min(Wp) then
The time-frequency uncertainty can be circumvented by the t=1+1
definition of an instantaneous frequency as done by the Hilbe t(P)=n
transform [9], but this will not be pursued here. Alternativ h(P;) = sn
We will be developing methods to quantify the structure of if > 1 then
the time series. These are based on locally determined time At(P) =t(P;) — t(Pi—1)
features particular to the structure of the oscillatorynalg Ah( ) = h(P;) — h(P;—1)
In the time domain, frequency can be defined as the time = (At(F;), Ah(F))

between consecutive peaks (or troughs) or the time between
pairs of zero crossings. Zero crossings are simply time in-
stances when the time series crosses zero. This is anvetuiti
definition that is capable of recognizing a single cycle of a
periodic signal. Furthermore, We strengthen the approgch b
considering amplitude-based features in addition to tleallo
period estimates.

A. Peak-to-Peak Features

In the oscillatory region, the time between local extrema
is the half-period of a single oscillation, and hence can be
considered an estimate of local frequency. For simplicity,

|f 1-dimensional feature spatleen
if Ah(P;) > 6 or Ah(P;) > —6 then
Assign samples fron®;_; to P; to the oscilla-
tory class
else
Assign samples fronP;,_; to P; to the non-
oscillatory class
end if
else if 2-dimensional feature spatleen
Find arg min dgyc(y;,x:)

J
Assign samples fron;_; to P; to the class of

We will use the term “peak” to refer to both local maxima Vi
and minima. We will denote thé/” peak P;, and the time end if
of this peak ast(P;). The feature time between peaks is end if
thereforeAt(P;) = t(P;) — t(P;—1) In Figure 13(a) We see en((ajnfc(j)rlf

the empirical distributions foAt( ) based on training data
of known classes (oscillatory and non-oscillatory regimés

threshold based on likelihood ratio of empirical densities can In the training data set, a window length =

5 was

be determined from the training data, and the samples batwasefficient to correctly identify the peaks of the oscillator

peaks are classified based on thaine differences relative to signal without false alarms due to noise. See Figure 8 for



Algorithm 2 On-line classification based on sample differ- ‘ Hustation of Parameters
ences [ Time = 11
Given time series, with N samples '
W = window size for grouping
M = number of samples in group that must be labeled
oscillatory
Y ={y; = (As;,As;j_1)|j is the index of feature pairs in
the training set
Feature pairs are labeled withif oscillatory and withO if

~
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Height =12.65
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non-oscillatory 0| Sndow=3 |
Setd = threshold onAs| sal ‘ ‘ ‘
for n=3to N do 2 * Sample |nd3eox %
ASn = Spn — Sn-—1
ASp_1 = 8n_1— Sp_2 Fig. 8. Parameters for amplitude and interval based detecto
Xp, = (Asp, Asp—1)
if 1-dimensional feature spatieen
if As, >0 or As, < —6 then given a discrete time series at time n. One drawback of
SetC,, =1 sample differencing is that it is very sensitive to noise. But,
else as high oscillations persist over a long period in our specifi
SetC, =0 application, We can strengthen the approach by requiriaiggth
end if set of dif'ference$Asn}fL:1 around a point in question exceed
else if 2-dimensional feature spateen the threshold. Although this introduces latency as We must
Find arg min dg,.(y;, x,) observe future samples before making a decision, the number
i . of points observed are fewer compared to tieak-to-peak
SetC, = binary label of training feature vectgy; method. At the peaks of the oscillatory region, the conseeut
gnd if differences of the signal decrease in magnitude. Therefore
if n > 2W then

. n—W-+1 n these areas are prone to missed detections. We would like to

it imn—aw2Ci = Moor 30 w1 Ci 2 M ok these points with a warning, even though they fall below

then , _ the threshold. To reduce these missed detections, We eegjuir
Classify s..—w+1 as oscillatory small number of sample#/, in a window ofiW’ samples such

else ) i that M < W, satisfy the threshold. At the onset of oscillation,
Cl?-SSﬁySn—W-H as non-oscillatory only future samples will satisfy the threshold, while at the
en_d if end of oscillation only past samples will satisfy it. Thene,
en?jnm%rlf two windows must be considered to prevent failed detection

at the edges. One window includes the sample in question and
the nextlW — 1 samples, while the other includes the sample

_ ) in question and the previoud” — 1 samples. A warning is
an illustration of the parameters for the peak-to-peak Oth jgq 64 if either window containg/ or more points above the

Since thepeak-to-peak method is based on time betweeny eshold, with a latency of — 1 samples. The selection of

peaks, We must wait for the next peak before classifying any; ig 5 tradeoff between missed detections and false alarms.
samples. This inducdatency in detection. We formally define ¢ 5/ is low, warnings can be triggered by only a few points,

latency as the number of samples that must elapse past #iGefore it is recommended thaf constitute a majority of
current sample before a decision is made on an event. For s in the window. Requiring /3 majority worked well
peak-to-peak features, the latency is the number of sampieg)r tests. Theample differences procedure is controlled by

artey >t O
between peaks, plus an additiora}~ samples, which is half o narameters, window sizZé” and the adjacent differences
the window size, required to detect the most recent peak. QHrametelM.

average the peak-to-peak time is 16 samples, ard 4 5,
the average latency will be 18. VI. MULTI-FEATURE DETECTION

B. Sample Differencing Heretofore, detection was based on a single feature such
Although the peak-to-peak height feature provides sepags time between peaks, and sample differences of adjacent
tion between these two classes, We can reduce the latenbgervations. Presumably, extending the feature set t@ mor
by considering the differences between adjacent samples. Than one feature, the classifier performance can be improved
training set distributions for the sample differences ofhea Once the peaks are detected it is a simple matter to calculate
class are seen in Figure 13(d). Again We can select a thikshiobth thetime andheight features. Thougheight as a feature
based on the likelihood ratio of the empirical probabilithas good separation properties on its own, We explore the joi
density functions (EPDF) of the differencés;,,= s,, — s,,—1, distributions ofpeak height and peak time respectively given



by, Ah(P;) and At(P;) to increase the predictive capacityFigure 13(d), there is much better separation. This is aelie

of the classifier. The benefit of a 2-dimensional feature spagecause the ambiguous differences occur at the peaks of the
is seen in Figure 9. Clearly it can be seen from Figure 13(lgyasi-triangular wave where the differences change sige. T
that there is considerable overlap between oscillatoryreomd  differences around the peak are small in magnitude andagverl
oscillatory regimes using\t(P;). But, At(F;) in conjunction with the differences of the non-oscillatory class. However
with Ah(P;) separates the oscillatory and non-oscillatorthe consecutive differencga\s,,, As,,—1) will be of opposite
regimes into two distinctly separable classes. Note that thign at the peak of the quasi-triangular waveform because a
usefulness of this feature space for classification dependsrising-to-falling transition is taking place. This signarige in

the training set to be representative of the churn in genkrralthe differencesAs,, and As,_; as their magnitude becomes
can be seen that the magnitudes of biithe and height are small keeps the oscillatory class separated from the non-
small in the non-oscillatory class, and large in the oswitha oscillatory class in feature space. While not linearly sapke,
class. In the classification problem involving a single deat classification is achieved with the nearest neighbor method
the threshold is a scalar value. In the case of the 2-dimeakiothis case. Algorithm 2 demonstrates classification \sétmple
feature space, a non-linear decision boundary would beretifferences in the 1- and 2-dimensional cases.

suited to differentiate the two classes. We appliecktnearest

neighbor (KNN) method, with the neighborhood parameter o Tene Spere DR
k = 1. First, We create a training set which consists of pairs of
(A(P;), Ah(P;)), i.e, peak-to-peak times andpeak-to-peak Bl e |

heights. The training set is created using the data wherengg 1
of signals are labeled as oscillatory and non-oscillatogythe
collection of feature vectors be denoted py In the testing
phase of the algorithm, We assign an exampleelonging to
an unknown class by finding the training set feature vector
y closest in Euclidean distance and assigrto the same

Second Difference
o

class as this “nearest neighbor.” In the casekof 1, the i
k closesty are found, and the unknown feature vectois B
assigned to the majority class of thenearest neighbors. The ' FirstDifference ’

results of the performance of this approach are detaileden t
results section. Compared to results using a single featze Fig. 10.  Feature space constructed from the sample first andnd
gains due to this approach is modest and We are refining 8lfF"ences:
feature set to improve performance. The method of sample
VIl. RESULTS

Training Feature Space for Peak-to-Peak Method The discussion heretofore, focused on the charactenratio
‘ S e of the high oscillation region of the signal via a single
10} ' ] and bivariate features extracted from the data. These fea-

tures include the amplitude of the Fourier coefficients in a
51 . local neighborhood (STFT), theeak-to-peak time At(P)

: ’ and heightAh(P), and thesample differences As,. The

Fourier coefficients andample differences were determined

15

=)

Peak-to-Peak Height

sl ] from current and previous data, and therefore can be used to
classify on a sample-by-sample basis in real tirfReak-to-
-1op . ] peak features induced latency in the classification because of
n ‘ Pl o the necessity to wait for the upcoming peak. Training sets of
s O o 2 % 0 known class were used to generate a distribution of theetesir

feature for each class. Figure 13 shows the distributions fo
Fig. 9. Feature space constructed from the peak-to-peak déind height each of the features. The distributions are used to edtablis
features based on the training set. a thresholdg on the feature. We see that the distribution of

peak-to-peak height has the best separation between classes
differences has the benefit of low latency, but the sampier this data set. In the single-feature case, We therefore
difference feature is not perfectly separable unlike in these this feature rather than time between peaks, which has
method based opeak-to-peak heights. Classification based oroverlapping oscillatory and non-oscillatory distribut& The
a single sample difference feature can be made more effectperformance of the algorithms can be compared using the
in a 2-dimensional feature space. Consider now the differerreceiver operating characteristic (ROC) curves in Figute 1
As, at timen, and the previous differencAs, _; at time These curves were obtained using labeled data over a week
n — 1. The feature space created by these features can be s&eflow-rate measurements, distinct from the training data.
in Figure 10. Comparing with the single-dimensional case iFhe ROC plots the true positive rate (TPR) against the false



TABLE |

ROC Curves

PERFORMANCECOMPARISON FORVARIOUS METHODS

Y ————
oser (-r ] Class. Error
0s6l | Features | Method | Parameters| Rate | TPR | FPR
Peak-to-Peak Features
AR(P) | Threshold] 6 =11 1.9% | 97.2% ] 1.7%
g os2 Ah(P) KNN k=1 2.9% | 96.8% | 2.8%
§ 0.9F S le diff 7 At(P)
£ B Tl eyl dfrences ARL(P) BF o, =05 | 1.5% | 97.3% | 1.1%
g T At(P) o =8
086} || ?:r:gho\dSTFT i n= 0.01
Sample Differences
i 1 Asp, Threshold| 6 =0.44 5.2% | 88.9% | 3.1%
0 D;JZ 01‘34 01‘36 DI‘JE D‘.l 0‘12 0‘14 0‘16 0‘18 W = 1
False Positive Rate M —
Asy, KNN k=1 7.0% | 95.9% | 8.0%
Fig. 11. Receiver operating characteristic curves geeérdiy varying Asp1 W=1
thresholds. The ML point represents the empirical distidou maximum- M=1
likelihood threshold. Asnp, KNN k=1 2.9% | 95.7% | 2.3%
Asn,1 W =10
M=9

positive rate (FPR). The TPR is the ratio of true positives to

actual positives (true positives and false negatives).HPR is _ .

the ratio of false positives to actual negatives (falsetpesi Petween the oscillatory and non-oscillatory classes. The 2
and true negatives). Points closest to the top left reptes@iinensional space suffers because it employs KNN, which
the best performance, with a high TPR and low FPR. THfloes not favor any particular class with its decision boupda
ROC curves were generated by testing through a range"&forder to improve the pgrfqrmance in 2-d|men§|onal space,
thresholds, including the Maximum likelihood (ML) threstio We need t_o use a classification algorlthr_n that will produce a
obtained from the EPDF estimates. Note that the ML threshdi@ter decision boundary around the oscillatory clastufes.
does not offer the best performance, but provides a reaonab Given the unpredictable nature of the non-oscillatory aign
good estimate. From the ROC, in the optimal cagesk- We build a decision boundary around the features of the
to-peak height outperforms botlsample differences and the oscillatory class. Features that fall within the boundaity e
maximum Fourier coefficient. This result clearly followsiin ~ classified oscillatory, and those that fall beyond the bauyd
the large separation between the distributionpesik-to-peak @S non-oscillatory. A simple way to do this is by the radial
heights. The tradeoff is the latency involved in determgninP@sis function (RBF) network [10]. The RBF network is
peak-to-peak features. The TPR, FPR, and total error rat@@n artificial neural network, of which the outpyt is a
are seen in Table I, which compares the performance Wgighted sum of radial basis functiopg| - ||). Consider our
various methods. The values in Table 1 were calculated usifigSsification problem, with feature vectorof unknown class

A testing data consisting of approximately 62,000 sampledd the set ofV training set feature vectoy;};_, from the

Table | compares the performance of single, and multi-featPScillatory class. The output of the RBF network, with weggh
classifiers. Column 1 is the feature(s) used, column 2 is tigt t©0 1, is

classification method, column 3 is the tuning parameter(s) o N

the classifier scheme, and column 4 is the error rate which is p(x) = ZP(HX = vill) @)
equal to the ratio of misclassifications of both types toltota =1

number of samples. The RBF is a function whose output only depends on the

Table | also includes the results for combined feature spacdistance from a center point, in this case ghe The RBF is
The first two rows compare the threshold method ugiidP) often the Gaussian function, and the norm in its argument is
to the KNN method in a 2-dimensional space composed tife Euclidean norm. To apply this method, We put a Gaussian
Ah(P) andAt(P). Despite achieving the excellent separatiosurface over every oscillatory training point in featurasp
in the 2-dimensional case, it is outperformed by simplyhe sum of these Gaussian “bumps” produces a hill over the
thresholdingAh(P). The threshold was set at 11, very close toscillatory features, that dies off as We move farther from
the oscillatory heights as can be seen in Figure 13(c). Ingloithem. Therefore, when an unknown featwrés close to the
so We assume that the oscillatory training data will represeoscillatory region in feature space, the value yfx) will
the testing values well, and by setting a tight thresholtsefa be relatively large. Setting a threshold gn which We will
positives can be avoided. Over the course of testing, the nalenotern, produces a decision boundary in feature space. We
oscillatory signal will producepeak-to-peak heights that are can interprety as an altitude on the surface created by the
very different than those from the training set. These mrrasum of basis functions. Features witlix) > n are classified
parameters will often jump over a threshold evenly spaced oscillatory.



Recall Figure 9, which displays the oscillatory trainingHowever, the latency in detection is now 9 samples.

features. Thetime feature has greater variance tha@ght,

therefore We do not want to use a radial basis function.
A RBF would produce a surface with too much width in This paper addressed the important problem of modeling
respect to theéneight and again We would suffer from excesdlow rate data in oil and gas production. Petroleum engineeri
false positives. We would like a basis function with a shar@espite being a mature discipline is found inadequate to
drop-off with respect to théneight, but one with a gentler mathematically model churn in the flow rates. We tackled the
roll-off in the direction of the more sporaditme feature. Problem from the point of view of frequency domain analysis

A bi-variate Gaussian function, with principal axes aligneand pattern recognition. Our proposal to bring to bear the
with the feature space axes, fits this requirement well. Ti§gience of dynamical systems provided us the tools to umcove
margina| variance 0fhe|ght' denotedo-h must be chosen the hidden time Varying periOdiCities in the flow rate which

small relative to the marginal variance tifre, denotedo;.

helped to invoke nonlinear modeling techniques to separate

VIII. CONCLUSIONS

The decision boundary produced by the bi-variate Gaussigigh oscillation regimes (churn) from non-oscillation iegs.

basis function is scene in Figure 12. The performance of thgéquency methods are more suitable for understanding and
basis function (BF) approach is seen in Table I. With the$aodeling complex data than time-domain based approaches.

parameters, it outperforms all othgeak-to-peak methods, The application of kernel adaptive filters to detect onset of
though the trade-off is an increase in the free parametdje tohlgh oscillation overcame the limitation of linear methods

selected. The next section of Table | compares classifitati®ich as the least mean square algorithm. Our methods are

Decision Boundary with Bi-variate Gaussian Basis Functions
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Fig. 12. Oscillatory training features and the decisionrgtary created with
the use of the bi-variate Gaussian basis function. In theeeg, = 0.4,

or =3, andn = 0.01.

with a threshold orsample differences As,,, and with KNN

in the 2-dimensional space formed ts,, and As,,_1. As a
much noisier feature, both methods wishmple differences
are outperformed by theeak-to-peak methods. Despite a
larger TPR, the 2-dimensional method has a larger total err

10 15 20 25 30 35
Peak-to-Peak Time (samples)

computationally light and can be implemented in an on-line
setting. As data is being collected from trillions of serssor
large repositories are built to understand the data to ksarne
the trove of information. The approaches We outline in this
paper potentially give the ability to analyze the data inrnea
real-time for process interdiction and correction. We pian
further investigate the techniques outlined to tackle otjyges

of sensor data from oil bore wells such as pressures in the sea

bed, and temperature gradients at various points in the well

As the sensors are networked, We plan to advance our methods

to detect trends, patterns, affinities, and correlationssacthe
network.

(1]

(2]
(3]

(4]

%

rate. Again this is due to the false positives that arise when
KNN establishes a decision boundary that does not closelyl

encase the oscillatory features. Outliers of the non-asaily

(8]

signal are often labeled oscillatory for this reason. Irs thi

caseW = 1 and M = 1, in which a sample is classified

exclusively on its own features, and not on the features i

surrounding samples in its neighborhood. On the bottom rqyg;
of Table I, We provide the results of 2-dimensiorsainple
differences, but with W = 10 and M = 9. This imposes

a much stricter condition on oscillation and reduces thsefal

positives. In a neighborhood of 10 samples adjacent to tiee on
in question, 9 of which must test as oscillatory under KNN,

for the target sample to be officially labeled oscillatorydér

this condition, KNN in 2-dimensional space performs better
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