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Abstract— Modern industrial applications such as the smart
grid and oil and gas are continuously monitored. The massive
amounts of data collected is then processed, and analyzed to
generate actions to ensure smooth operations to positivelyimpact
the bottom line. In the oil and gas industry, modern oil rigs are
outfitted with thousands of sensors to measure the flow rates,
as well as the physical and chemical characteristics that affect
production from underground off-shore and on-shore reservoirs.
Analytical methods packaged into a surveillance system and
applied to the massive network of sensors track the state of the
system and issue warning alerts about impending failures. In this
setting, real time algorithms are needed to detect a diversity of
event types, such as anomalies, trends or forewarn failure events
to generate alerts for proactive engineering actions. In this paper,
effective online algorithms drawn from the signal processing
and statistics literature are applied to quickly detect anomalies,
trends, and turbulence in the flow of oil in the bore well whichis
typical in oil production. The short time Fourier transform and
dynamical systems were utilized to uncover structure in thedata
to apply methods based on local derivatives and estimation based
on linear and non-linear methods. We compare the performance
of the algorithms and make suitable recommendations for their
application. Furthermore We apply non-linear time series models
such as kernel adaptive filters for prediction purposes and
compare their performance against standard linear methodssuch
as the least mean square algorithm. Extensive experiments are
conducted over a variety of stream patterns showing that our
methods perform well both in terms of accuracy of detection
and the short latency in the decision.

I. I NTRODUCTION

The supply of easily reachable and refinable petroleum
is finite, which motivates producers to extract as much as
possible from a given well. Ideally, production should flow
24/7 all year round. Any interruptions to the flow can result
in lost income in the millions of dollars. Equipment can be
highly specialized, or even custom manufactured for a site,so
repair and replacement is expensive. This is particularly true
of offshore assets. Demographics of the skilled labor supply
are shifting unfavorably for the industry. Production may be
located in a remote area; offshore, or in an extremely hot, cold
or even dangerous area. For all the reasons cited, it is critical
for the oil drilling and production industry to build automated
surveillance systems that monitor various stages of production
and aid the employees (operators) on the platform to ensure
production with few interruptions [1]. Modern oil fields are

equipped with thousands of sensors and gauges to measure
various physical and chemical characteristics of oil and gas
-from rock formations in the sea bed that contain deposits- to
distribution systems. Continuous streams of sensor readings
can be harnessed via analytical methods to paint a picture
depicting the various stages of oil production.

Upon drilling to tap the oil deposits, the bore well is
managed to yield maximum capacity. Several aspects come
into play that introduce tremendous variability into the pro-
duction process. Some factors that play a role are: fluid
composition, oil viscosity, compressibility, specific gravity,
specific gravity of water, solids, and others. These aspectscan
produce varying flow regimes. Two common occurrences in oil
production that cause disruptions to flow rates are:slugging
and churn. Slugging relates to turbulent flows where gas
bubbles coalesce, expand, and collapse continuously. Changes
in fluid composition from wholly liquid to wholly gaseous over
time periods leads to churn which is a major cause of flow
rates disruption. Detecting Some common flow rate patterns
are 1. high amplitude, high oscillation, 2. low amplitude, high
oscillation, 3. low oscillation with pseudo-periodic behavior,
4. normal flow rate followed by a jump, and anomalous flows
that are some combination of (1-4). Figure 1 shows examples
of the variation of the flow on four different time periods.
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Fig. 1. Measurements on 4 different days. Left plots presentan oscillatory
behavior. The time axis is in hours for all 4 plots.



The most important variable in oil and gas production is
the flow rate. Higher flow rates with fewer disruptions, result
in greater yields. Therefore all our experiments are based on
the flow rate variable. Due to the multiplicity of factors cited
in the introduction, flow rates along a bore well tend to be
oscillatory. Controlling the high frequency oscillation (churn)
is critical and so, We focus on early detection and prediction
of churn in flow rates.

II. DATA DESCRIPTION

The oscillations in the flow rates demonstrate a slew of
behaviors that include high oscillation - high amplitude, high
oscillation - low amplitude, low oscillation, linearity, discon-
tinuities. When the high oscillation segment (Figure 2) is
examined carefully, it resembles a triangular oscillation. But
there may be a hidden periodic structure of the time series
that is varying over time. This quasi-periodic phenomenon can
be extracted by frequency domain methods. Although, flow
rate time-series is quasi-periodic; it is a narrow band signal
nonetheless. In contrast, the non-oscillatory regions do not
have any discernible structure. Furthermore, different artifacts
appear in the data, such as missing values, sudden drops to
zero value or clipping of the signal due to sensor malfunction,
or simply the sensor being turned off due to a preventive
maintenance event.
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Fig. 2. Original data series in the oscillatory regime (a). Original data series
in the Non-oscillatory regime (b). Frequency magnitude spectra of (a) and
(b).

In order to fully comprehend the signal, We broke the time
series into its oscillatory and non-oscillatory segments shown
in Figure 2. It is clear that the flow rates areperiodic in
the oscillatory regions. Examining the time series carefully,
it is suspected that there are different regions of varying
frequencies. This suspected periodic structure in the flow-
rate signal made a case for examining the time-series via
frequency domain methods. Fourier analysis is the main-stay
of frequency domain analysis. In classical Fourier analysis,
bandwidth is defined in relation to the Fourier transform.
Bandwidth is simply a measure of the range of frequencies
(spectrum) usually measured in Hertz. The Fourier transform
of a functionf(t) gives a view of the signature of the data
known as the frequency spectrum, but it completely masks the

relationship between the frequencies and time over which the
data is analyzed. In other words bandwidth is a global charac-
teristic of the function. To overcome this deficiency, the notion
of Windowed Fourier transform was introduced to determine
local bandwidth by analyzing the data over windows. This
is the motivation underlying the short time Fourier transform
(STFT). The STFT involves computing Fourier coefficients
over windows of the time series. Figure 3(b) shows thespec-
trogram of the flow rates on one of the days. The spectrogram
is merely a plot of time (horizontal axis) and frequencies
(vertical axis) with a third dimension which is simply the
magnitude of the Fourier coefficients over the windowW .
This enables us to grasp the frequency components within time
windows. Notice that the major transitions in the regimes can
be observed by the white vertical plumes. While the STFT
provides a mechanism to analyze frequencies over time, We
found that it is limited by the conflict betweentime-frequency
localization. The Heisenberg uncertainty principle states that
time and frequency resolutions are inversely related leading to
the condition where analyzing a signal over longer windows
compromises frequency resolution and vice-versa [2]. Also
in the STFT implementation the window size is fixed which
limits the frequency range. A description of the analysis and
detection of the flow rate signal is given in the section on
Short Time Fourier Transform. As We cannot uncover the
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Fig. 3. (a) The original flow rate time series and (b) spectrogram of the time
series.

time varying periodicities in the time-series data, an alternative
approach based on dynamical systems was invoked to unravel
the time-varying periodic structure in the oscillatory segments
of the data. In addition to the time-frequency spectrum Figure
3(a) and (b), We examine the behavior of the oscillations
by considering the underlying dynamical system which may
have been generated the time series. The dynamical system
is regulated by a set of parameters, and their evolution over
time is known as thephase space of the process. The quasi-
periodic regime is conceivably produced by a well organized
attractor. An attractor in the parlance of dynamical systems
is a set towards which the process converges over time. A
detector based on this approach should be able to identify the
quasi-periodic region by an attractor. Although We do not have



access directly to the phase space of the original dynamical
system We can still study the properties of attractors in a
reconstructed phase space using Takens’ time delay embedding
theorem [3]. Takens’ theorem reconstructs the phase space
with m-dimensional vectors whose components are sampled
from the univariate time series with a time spacing of∆T . The
parametersm and∆T are known as the embedding dimension
and time delay, respectively.

Both of these parameters are estimated by using segments
of the flow-rate data that is known to contain oscillations.
The parameter, time delay,∆T , should be chosen such that
components of the time delay vector are minimally correlated.
It is common practice to find the mutual information between
a time series and time series delayed by∆T , as a function of
∆T , and choose the time delay that produces the first local
minimum in mutual information, see Figure 4. The embedding
dimension,m is larger than the expectedcorrelation dimension
of the attractor so that the time series is fully unfolded into
phase space. The correlation dimension is a measure of the
dimensionality of the space occupied by a set of points.

The correlation dimension can be estimated using the
Grassberger-Procaccia algorithm [4]. In this algorithm We
calculate the correlation sum,C(r), which is the fraction of
pairs of points that are within a distancer of each other.
In D dimensional space, asr decreases,C(r) will die off
proportional torD, and thereforeD = limr→0

log rD

log r
. Plotting

logC(r) vs. log r reveals a linear relationship with slope
equalling D for small r, as seen in Figure 5. In practice,
with finite data the curve levels off for smallr because each
point is the only one in its neighborhood of radiusr. These
quantities can be used in generating the recurrence plot, which
consists of a matrix of all the pairwise distances between the
different vectors generated considering the lag and embedding
dimension. Figure 6 shows an example for a purely quasi-
oscillatory segment. In this case only distances less than five
are shown as black wiggles. The embedding dimension vector
is of size 5 (it is only required that the embedding dimension
be larger than the correlation dimension) and∆T equal to 3.
Both axis correspond to time values, they denote the starting
point of each vector created using the parameters∆T and
m. Therefore We are actually comparing different segments
of the time series. As We move along the first row elements
whose value is 1 denote future pieces of the time signal that
are similar to the first segment. This can be interpreted as a
periodic trajectory in the phase space. Therefore the distance
between consecutive diagonals represents an estimate of the
period. Figure 6 shows a specific window of the recurrence
plot, in this case the distance between the diagonal lines is
changing with time, which represents shifts in the period of
the signal.

Thus the recurrence plot in Figure 6 resolves the resolution
problem encountered with the STFT and allowed us to capture
finer details, such as the time varying periodicities in the flow-
rate signal. Also, the dynamical systems approach allowed us
to characterize the time series in terms of the reconstructed
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Fig. 4. Selection of time delay using mutual information as adependency
measure. The arrow denotes the value chosen∆T = 3
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Fig. 5. Determination of the correlation dimension,D, which is the slope
of the linear section before the plot levels off.

phase space, which provided an estimate of the embedding
dimension. The estimate of the embedding dimension allowed
us to select the order (number of lags) of the linear model to
approximate the flow rate time-series. The Least Mean Square
(LMS) was fit to the data. LMS is an iterative version of
ordinary least squares. The linearity assumption of LMS was
limiting and it failed to capture the oscillatory behavior.To
overcome the deficiency, We resorted to a non-linear modeling
approach known as the kernel least mean square (KLMS)
method. While it was able to detect the oscillatory and non-
oscillatory regimes successfully, due to the non-stationary
behavior of the non-oscillatory part of the signal, its imple-
mentation resulted in numerous false alarms. In order to reduce
these errors, We developed non-parametric ad-hoc methods,
handcrafted for the modeling of a time series interspersed with
oscillatory and non-oscillatory regimes. These methods depend
on the notion of thelocal derivative. The descriptions of the
methods are outlined in the sections onpredictive approaches
and local time and amplitude features.

III. SHORT TIME FOURIER TRANSFORM

As We outlined in the section on data description, We ap-
plied the STFT to achieve time-frequency localization in order
to separate the flow-rate regimes. This is achieved by breaking
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Fig. 6. Recurrence plot using a delay of 3 samples and an embedding
dimension of 5.

the time-series into contiguous windows. We compute the
Fourier coefficients in each window and choose the Fourier
coefficient with largest magnitude over each window as our
classification feature. This is a reasonable approach because
the larger Fourier coefficients are highly correlated to the
signal. This result can be derived on the basis of the Parseval’s
identity [5]. The window slides through the time series -
each shifted by one time unit-producing one feature value
over every window. Note that the window only considers past
values. Since flow rate consists of two regions (oscillatoryand
non-oscillatory),We compute the empirical probability density
functions (EPDF) over the two regions relative to the feature
variable. The empirical densities are computed from thetrain-
ing data. The training data is simply the flow rates consisting
of oscillatory and non-oscillatory regimes from our set of raw
flow rates segmented by day collected from a certain oil well.
A decision is made on any new valuexnew by comparing the
likelihood of the sample belonging to either the oscillatory or
non- oscillatory regions denoted respectively byR1 orR2. The
empirical probability density function for each region aregiven
by; f̂(xnew |R1) and f̂(xnew |R2). The empirical densities are
simply non-parametric density estimates obtained by applying
the kernel smoothing density estimator to a set of discrete
points xi,j , i = 1, 2, . . . , n and j = 1, 2. The subscripts,i
and j index the number of points, and the class conditional
densities. A new observationxnew is classified intoR1, if the
class conditional probability of̂f(xnew |R1) is greater than
f̂(xnew |R2). This approach is sensitive to the length of the
window. For example a small window size will only provide
frequency features that describe the rising and falling edge of
the quasi triangular wave in the oscillations. This will also
produce a number of false alarms since We are only sensitive
to linear behavior. A larger window near the period of the
triangular wave would reduce the number of false alarms
because, We are covering the range of frequencies over the
period of the signal. A detailed analysis of the performance
of STFT and other methods given in section VII. Figure 11
shows the Receiver operating characteristic curves (ROC) for
the short time Fourier and other methods. Departing from

the classical Fourier type analysis of signal characterization
and detection, and to resolve the time-frequency localization
conflict, We will introduce in the next section, predictive
approaches to detection, motivated by our results from the
dynamical systems techniques.

IV. PREDICTIVE MODEL APPROACH

While the oscillatory part of the data is quasi-periodic,
the non-oscillatory part consists of jumps, irregularities, low
amplitude oscillations, and variety of other behaviors. We
began by modeling the time-series oscillations by a linear
model such that a change in the flow regime can be detected
by tracking the prediction error. The coefficients of the linear
model were determined by minimizing the mean squared error
(MSE). An on-line method finds the optimal solution by using
gradient descent which is a simple iterative version of the
least squares estimation. This algorithm is popularly known
as the Least Mean Squares (LMS) [6]. Assuming a stationary
process, the optimal coefficients are given by the Wiener
method. These are obtained by solving a linear system in terms
of the correlation matrix of the input and the cross-correlation
between the input and predicted value. The drawback of this
method is that it is restricted to stationary time series and
linear models.

Although the algorithm is simple and straight forward to
implement, the linear assumption is limiting. The model does
not capture the time varying periodicities in the time series.
Therefore a linear relation between the past values and the
future no longer holds. Therefore, to model the time series,We
applied kernel adaptive filter (KAF) [7] in order to overcome
the linearity model assumptions. The KAF models involve a
nonlinear mapping from the input space to what is known as
a feature space. The mapping is produced by means of the
kernel function. It allows us to apply linear techniques in the
feature space, whose solution would have required non-linear
methods in the input space. In this setting, We use an extension
to the LMS filter known as kernel LMS (KLMS) which is a
member of the kernel adaptive family of filters [8]. The key
idea is that the coefficient vector and the input vector no longer
lie in the input space, but rather are projected into an infinite
dimensional space by the use of the kernel. For more detailed
treatment of kernel adaptive filters refer to [7]. Although We
designed non-linear filters using basic linear techniques in
the feature space, it introduces additional costs. The kernel
is a bi-variate function which projects original samples into
a new feature space, usually chosen to be of a much higher
dimension since it simplifies the problem to the linear case.
Upon projecting the samples to a higher dimensional space, the
coefficient vector is a linear combination of the input series.
Thus, KLMS requires storing the input series, in order to
obtain the coefficient vector.

The details of the application of KLMS filter are presented
in [7]. In contrast to the LMS algorithm, the KLMS specif-
ically captured the structure of the oscillation and therefore
the sample prediction error could be used to determine the
switching between the oscillatory and non-oscillatory regimes



(Figure 7). The KLMS approach was applied to time series
consisting of two states; oscillatory and non-oscillatory. In
this case, it was able to detect the transitions from the two
states successfully. Currently, We are conducting experiments
to test its applicability to other types of signals. In the above
formulation of the KAF, We used a Gaussian kernel with
variance equal to 5, a step size of 0.9, and an input vector
size of 15, which was approximately half the period. A range
of values were tested but these settings gave us the best results.
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Fig. 7. Using the prediction error from Linear and non-linear models to
detect oscillations.

V. L OCAL TIME AND AMPLITUDE FEATURES

The time-frequency uncertainty can be circumvented by the
definition of an instantaneous frequency as done by the Hilbert
transform [9], but this will not be pursued here. Alternatively
We will be developing methods to quantify the structure of
the time series. These are based on locally determined time
features particular to the structure of the oscillatory signal.
In the time domain, frequency can be defined as the time
between consecutive peaks (or troughs) or the time between
pairs of zero crossings. Zero crossings are simply time in-
stances when the time series crosses zero. This is an intuitive
definition that is capable of recognizing a single cycle of a
periodic signal. Furthermore, We strengthen the approach by
considering amplitude-based features in addition to the local
period estimates.

A. Peak-to-Peak Features

In the oscillatory region, the time between local extrema
is the half-period of a single oscillation, and hence can be
considered an estimate of local frequency. For simplicity,
We will use the term “peak” to refer to both local maxima
and minima. We will denote theith peakPi, and the time
of this peak ast(Pi). The feature time between peaks is
therefore∆t(Pi) = t(Pi) − t(Pi−1) In Figure 13(a) We see
the empirical distributions for∆t(Pi) based on training data
of known classes (oscillatory and non-oscillatory regimes). A
thresholdθ based on likelihood ratio of empirical densities can
be determined from the training data, and the samples between
peaks are classified based on theirtime differences relative to

the threshold. Moreover, We can also use thepeak-to-peak
heights as another discriminatory feature variable. The height
of the ith peak will be denotedh(Pi) and the height between
peaks is∆h(Pi) = h(Pi)−h(Pi−1). As seen in Figure 13(c),
the classes have greater separation in this feature variable,
thereby lowering the chances of misclassification. When We
classify apeak-to-peak feature, We classify all of the samples
between peaks to the same class. This grouping of sample
classifications offers robustness over the sample-by-sample
approach, since oscillatory behavior is persistent over time, but
it requires constant amplitude. Obviously, these two features
can be combined to create a two dimensional discriminant
feature vector. We propose a simple on-line algorithm to detect
local extrema and classify based on their features, delineated
in Algorithm 1.

Algorithm 1 On-line classification based on peak features
Given time seriess, with N samples
L = window length for peak detection

Require: L odd
a = L−1

2

Y = {yj = (∆t(Pj),∆h(Pj)|j is the index of feature pairs
in the training set}
Setθ = threshold on|∆h(P )|
i = 0
for n = a+ 1 to N − a do
WP = sn−a to sn+a

if sn == max(WP ) or sn == min(WP ) then
i = i+ 1
t(Pi) = n
h(Pi) = sn
if i > 1 then
∆t(Pi) = t(Pi)− t(Pi−1)
∆h(Pi) = h(Pi)− h(Pi−1)
xi = (∆t(Pi),∆h(Pi))
if 1-dimensional feature spacethen

if ∆h(Pi) > θ or ∆h(Pi) > −θ then
Assign samples fromPi−1 to Pi to the oscilla-
tory class

else
Assign samples fromPi−1 to Pi to the non-
oscillatory class

end if
else if 2-dimensional feature spacethen

Find argmin
j

dEuc(yj ,xi)

Assign samples fromPi−1 to Pi to the class of
yj

end if
end if

end if
end for

In the training data set, a window lengthL = 5 was
sufficient to correctly identify the peaks of the oscillatory
signal without false alarms due to noise. See Figure 8 for



Algorithm 2 On-line classification based on sample differ-
ences

Given time seriess, with N samples
W = window size for grouping
M = number of samples in group that must be labeled
oscillatory
Y = {yj = (∆sj ,∆sj−1)|j is the index of feature pairs in
the training set}
Feature pairs are labeled with1 if oscillatory and with0 if
non-oscillatory
Setθ = threshold on|∆s|
for n = 3 to N do
∆sn = sn − sn−1

∆sn−1 = sn−1 − sn−2

xn = (∆sn,∆sn−1)
if 1-dimensional feature spacethen

if ∆sn > θ or ∆sn < −θ then
SetCn = 1

else
SetCn = 0

end if
else if 2-dimensional feature spacethen

Find argmin
j

dEuc(yj ,xn)

SetCn = binary label of training feature vectoryj

end if
if n > 2W then

if
∑n−W+1

i=n−2W+2 Ci ≥ M or
∑n

i=n−W+1 Ci ≥ M
then

Classifysn−W+1 as oscillatory
else

Classifysn−W+1 as non-oscillatory
end if

end if
end for

an illustration of the parameters for the peak-to-peak method.
Since thepeak-to-peak method is based on time between
peaks, We must wait for the next peak before classifying any
samples. This induceslatency in detection. We formally define
latency as the number of samples that must elapse past the
current sample before a decision is made on an event. For the
peak-to-peak features, the latency is the number of samples
between peaks, plus an additionalL−1

2
samples, which is half

the window size, required to detect the most recent peak. On
average the peak-to-peak time is 16 samples, and ifL = 5,
the average latency will be 18.

B. Sample Differencing

Although the peak-to-peak height feature provides separa-
tion between these two classes, We can reduce the latency
by considering the differences between adjacent samples. The
training set distributions for the sample differences of each
class are seen in Figure 13(d). Again We can select a threshold
based on the likelihood ratio of the empirical probability
density functions (EPDF) of the differences∆sn= sn− sn−1,
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given a discrete time seriess at time n. One drawback of
sample differencing is that it is very sensitive to noise. But,
as high oscillations persist over a long period in our specific
application, We can strengthen the approach by requiring that a
set of differences{∆sn}

k

n=1 around a point in question exceed
the threshold. Although this introduces latency as We must
observe future samples before making a decision, the number
of points observed are fewer compared to thepeak-to-peak
method. At the peaks of the oscillatory region, the consecutive
differences of the signal decrease in magnitude. Therefore,
these areas are prone to missed detections. We would like to
mark these points with a warning, even though they fall below
the threshold. To reduce these missed detections, We require a
small number of samplesM , in a window ofW samples such
thatM < W , satisfy the threshold. At the onset of oscillation,
only future samples will satisfy the threshold, while at the
end of oscillation only past samples will satisfy it. Therefore,
two windows must be considered to prevent failed detection
at the edges. One window includes the sample in question and
the nextW − 1 samples, while the other includes the sample
in question and the previousW − 1 samples. A warning is
issued if either window containsM or more points above the
threshold, with a latency ofW − 1 samples. The selection of
M is a tradeoff between missed detections and false alarms.
If M is low, warnings can be triggered by only a few points,
therefore it is recommended thatM constitute a majority of
points in the window. Requiring a2/3 majority worked well
in our tests. Thesample differences procedure is controlled by
two parameters, window sizeW and the adjacent differences
parameterM .

VI. M ULTI -FEATURE DETECTION

Heretofore, detection was based on a single feature such
as time between peaks, and sample differences of adjacent
observations. Presumably, extending the feature set to more
than one feature, the classifier performance can be improved.
Once the peaks are detected it is a simple matter to calculate
both thetime andheight features. Thoughheight as a feature
has good separation properties on its own, We explore the joint
distributions ofpeak height andpeak time respectively given



by, ∆h(Pi) and ∆t(Pi) to increase the predictive capacity
of the classifier. The benefit of a 2-dimensional feature space
is seen in Figure 9. Clearly it can be seen from Figure 13(b),
that there is considerable overlap between oscillatory andnon-
oscillatory regimes using∆t(Pi). But, ∆t(Pi) in conjunction
with ∆h(Pi) separates the oscillatory and non-oscillatory
regimes into two distinctly separable classes. Note that the
usefulness of this feature space for classification dependson
the training set to be representative of the churn in general. It
can be seen that the magnitudes of bothtime and height are
small in the non-oscillatory class, and large in the oscillatory
class. In the classification problem involving a single feature,
the threshold is a scalar value. In the case of the 2-dimensional
feature space, a non-linear decision boundary would be better
suited to differentiate the two classes. We applied thek-nearest
neighbor (KNN) method, with the neighborhood parameter
k = 1. First, We create a training set which consists of pairs of
(∆t(Pi), ∆h(Pi)), i.e, peak-to-peak times andpeak-to-peak
heights. The training set is created using the data where regions
of signals are labeled as oscillatory and non-oscillatory.Let the
collection of feature vectors be denoted byy. In the testing
phase of the algorithm, We assign an examplex belonging to
an unknown class by finding the training set feature vector
y closest in Euclidean distance and assignx to the same
class as this “nearest neighbor.” In the case ofk > 1, the
k closesty are found, and the unknown feature vectorx is
assigned to the majority class of thek nearest neighbors. The
results of the performance of this approach are detailed in the
results section. Compared to results using a single feature, the
gains due to this approach is modest and We are refining our
feature set to improve performance. The method of sample
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Fig. 9. Feature space constructed from the peak-to-peak time and height
features based on the training set.

differences has the benefit of low latency, but the sample
difference feature is not perfectly separable unlike in the
method based onpeak-to-peak heights. Classification based on
a single sample difference feature can be made more effective
in a 2-dimensional feature space. Consider now the difference
∆sn at time n, and the previous difference∆sn−1 at time
n−1. The feature space created by these features can be seen
in Figure 10. Comparing with the single-dimensional case in

Figure 13(d), there is much better separation. This is achieved
because the ambiguous differences occur at the peaks of the
quasi-triangular wave where the differences change sign. The
differences around the peak are small in magnitude and overlap
with the differences of the non-oscillatory class. However,
the consecutive differences(∆sn,∆sn−1) will be of opposite
sign at the peak of the quasi-triangular waveform because a
rising-to-falling transition is taking place. This sign change in
the differences∆sn and∆sn−1 as their magnitude becomes
small keeps the oscillatory class separated from the non-
oscillatory class in feature space. While not linearly separable,
classification is achieved with the nearest neighbor methodin
this case. Algorithm 2 demonstrates classification withsample
differences in the 1- and 2-dimensional cases.
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Fig. 10. Feature space constructed from the sample first and second
differences.

VII. R ESULTS

The discussion heretofore, focused on the characterization
of the high oscillation region of the signal via a single
and bivariate features extracted from the data. These fea-
tures include the amplitude of the Fourier coefficients in a
local neighborhood (STFT), thepeak-to-peak time ∆t(P )
and height∆h(P ), and the sample differences ∆sn. The
Fourier coefficients andsample differences were determined
from current and previous data, and therefore can be used to
classify on a sample-by-sample basis in real time.Peak-to-
peak features induced latency in the classification because of
the necessity to wait for the upcoming peak. Training sets of
known class were used to generate a distribution of the desired
feature for each class. Figure 13 shows the distributions for
each of the features. The distributions are used to establish
a threshold,θ on the feature. We see that the distribution of
peak-to-peak height has the best separation between classes
for this data set. In the single-feature case, We therefore
use this feature rather than time between peaks, which has
overlapping oscillatory and non-oscillatory distributions. The
performance of the algorithms can be compared using the
receiver operating characteristic (ROC) curves in Figure 11.
These curves were obtained using labeled data over a week
of flow-rate measurements, distinct from the training data.
The ROC plots the true positive rate (TPR) against the false
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Fig. 11. Receiver operating characteristic curves generated by varying
thresholds. The ML point represents the empirical distribution maximum-
likelihood threshold.

positive rate (FPR). The TPR is the ratio of true positives to
actual positives (true positives and false negatives). TheFPR is
the ratio of false positives to actual negatives (false positives
and true negatives). Points closest to the top left represent
the best performance, with a high TPR and low FPR. The
ROC curves were generated by testing through a range of
thresholds, including the Maximum likelihood (ML) threshold
obtained from the EPDF estimates. Note that the ML threshold
does not offer the best performance, but provides a reasonably
good estimate. From the ROC, in the optimal case,peak-
to-peak height outperforms bothsample differences and the
maximum Fourier coefficient. This result clearly follows from
the large separation between the distributions ofpeak-to-peak
heights. The tradeoff is the latency involved in determining
peak-to-peak features. The TPR, FPR, and total error rate
are seen in Table I, which compares the performance of
various methods. The values in Table 1 were calculated using
A testing data consisting of approximately 62,000 samples.
Table I compares the performance of single, and multi-feature
classifiers. Column 1 is the feature(s) used, column 2 is the
classification method, column 3 is the tuning parameter(s) of
the classifier scheme, and column 4 is the error rate which is
equal to the ratio of misclassifications of both types to total
number of samples.

Table I also includes the results for combined feature spaces.
The first two rows compare the threshold method using∆h(P )
to the KNN method in a 2-dimensional space composed of
∆h(P ) and∆t(P ). Despite achieving the excellent separation
in the 2-dimensional case, it is outperformed by simply
thresholding∆h(P ). The threshold was set at 11, very close to
the oscillatory heights as can be seen in Figure 13(c). In doing
so We assume that the oscillatory training data will represent
the testing values well, and by setting a tight threshold, false
positives can be avoided. Over the course of testing, the non-
oscillatory signal will producepeak-to-peak heights that are
very different than those from the training set. These erratic
parameters will often jump over a threshold evenly spaced

TABLE I

PERFORMANCECOMPARISON FORVARIOUS METHODS

Class. Error
Features Method Parameters Rate TPR FPR

Peak-to-Peak Features
∆h(P ) Threshold θ = 11 1.9% 97.2% 1.7%
∆h(P ) KNN k = 1 2.9% 96.8% 2.8%
∆t(P )
∆h(P ) BF σh = 0.5 1.5% 97.3% 1.1%
∆t(P ) σt = 8

η = 0.01
Sample Differences

∆sn Threshold θ = 0.44 5.2% 88.9% 3.1%
W = 1
M = 1

∆sn KNN k = 1 7.0% 95.9% 8.0%
∆sn−1 W = 1

M = 1
∆sn KNN k = 1 2.9% 95.7% 2.3%

∆sn−1 W = 10
M = 9

between the oscillatory and non-oscillatory classes. The 2-
dimensional space suffers because it employs KNN, which
does not favor any particular class with its decision boundary.
In order to improve the performance in 2-dimensional space,
We need to use a classification algorithm that will produce a
tighter decision boundary around the oscillatory class features.

Given the unpredictable nature of the non-oscillatory signal,
We build a decision boundary around the features of the
oscillatory class. Features that fall within the boundary will be
classified oscillatory, and those that fall beyond the boundary
as non-oscillatory. A simple way to do this is by the radial
basis function (RBF) network [10]. The RBF network is
an artificial neural network, of which the outputϕ is a
weighted sum of radial basis functionsρ(|| · ||). Consider our
classification problem, with feature vectorx of unknown class
and the set ofN training set feature vectors{yi}

N

i=1 from the
oscillatory class. The output of the RBF network, with weights
set to 1, is

ϕ(x) =

N∑

i=1

ρ(||x− yi||) (1)

The RBF is a function whose output only depends on the
distance from a center point, in this case theyi. The RBF is
often the Gaussian function, and the norm in its argument is
the Euclidean norm. To apply this method, We put a Gaussian
surface over every oscillatory training point in feature space.
The sum of these Gaussian “bumps” produces a hill over the
oscillatory features, that dies off as We move farther from
them. Therefore, when an unknown featurex is close to the
oscillatory region in feature space, the value ofϕ(x) will
be relatively large. Setting a threshold onϕ, which We will
denoteη, produces a decision boundary in feature space. We
can interpretη as an altitude on the surface created by the
sum of basis functions. Features withϕ(x) > η are classified
as oscillatory.



Recall Figure 9, which displays the oscillatory training
features. Thetime feature has greater variance thanheight,
therefore We do not want to use a radial basis function.
A RBF would produce a surface with too much width in
respect to theheight and again We would suffer from excess
false positives. We would like a basis function with a sharp
drop-off with respect to theheight, but one with a gentler
roll-off in the direction of the more sporadictime feature.
A bi-variate Gaussian function, with principal axes aligned
with the feature space axes, fits this requirement well. The
marginal variance ofheight, denotedσh must be chosen
small relative to the marginal variance oftime, denotedσt.
The decision boundary produced by the bi-variate Gaussian
basis function is scene in Figure 12. The performance of the
basis function (BF) approach is seen in Table I. With these
parameters, it outperforms all otherpeak-to-peak methods,
though the trade-off is an increase in the free parameters tobe
selected. The next section of Table I compares classification
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Fig. 12. Oscillatory training features and the decision boundary created with
the use of the bi-variate Gaussian basis function. In this case σh = 0.4,
σt = 3, andη = 0.01.

with a threshold onsample differences ∆sn, and with KNN
in the 2-dimensional space formed by∆sn and∆sn−1. As a
much noisier feature, both methods withsample differences
are outperformed by thepeak-to-peak methods. Despite a
larger TPR, the 2-dimensional method has a larger total error
rate. Again this is due to the false positives that arise when
KNN establishes a decision boundary that does not closely
encase the oscillatory features. Outliers of the non-oscillatory
signal are often labeled oscillatory for this reason. In this
caseW = 1 and M = 1, in which a sample is classified
exclusively on its own features, and not on the features of
surrounding samples in its neighborhood. On the bottom row
of Table I, We provide the results of 2-dimensionalsample
differences, but with W = 10 and M = 9. This imposes
a much stricter condition on oscillation and reduces the false
positives. In a neighborhood of 10 samples adjacent to the one
in question, 9 of which must test as oscillatory under KNN,
for the target sample to be officially labeled oscillatory. Under
this condition, KNN in 2-dimensional space performs better.

However, the latency in detection is now 9 samples.

VIII. C ONCLUSIONS

This paper addressed the important problem of modeling
flow rate data in oil and gas production. Petroleum engineering
despite being a mature discipline is found inadequate to
mathematically model churn in the flow rates. We tackled the
problem from the point of view of frequency domain analysis
and pattern recognition. Our proposal to bring to bear the
science of dynamical systems provided us the tools to uncover
the hidden time varying periodicities in the flow rate which
helped to invoke nonlinear modeling techniques to separate
high oscillation regimes (churn) from non-oscillation regions.
Frequency methods are more suitable for understanding and
modeling complex data than time-domain based approaches.
The application of kernel adaptive filters to detect onset of
high oscillation overcame the limitation of linear methods
such as the least mean square algorithm. Our methods are
computationally light and can be implemented in an on-line
setting. As data is being collected from trillions of sensors,
large repositories are built to understand the data to harness
the trove of information. The approaches We outline in this
paper potentially give the ability to analyze the data in near
real-time for process interdiction and correction. We planto
further investigate the techniques outlined to tackle other types
of sensor data from oil bore wells such as pressures in the sea
bed, and temperature gradients at various points in the well.
As the sensors are networked, We plan to advance our methods
to detect trends, patterns, affinities, and correlations across the
network.
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Fig. 13. Empirical probability density function estimate by kernel smoothing.


