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Abstract

The success of reinforcement learning in real-world problems depends on careful selection of features to represent the
state. Proper feature selection results in the increased ability to approximate the value function and in quicker learning, as
only relevant information is emphasized. It is desirable to generate such features automatically, as this would otherwise
be a trial and error process requiring a human expert. We propose a method to automatically map states to feature
vectors, which are not only sufficiently descriptive of the environment, but are invariant to information not relevant to the
agent’s goal. The mapping is based on the principle that if the Q-values for two states under the same action are similar,
then the states themselves should be similar. This similarity is realized in a space defined by a metric computed using
an information-theoretic approach to metric learning. Our method works in conjunction with a Q-learning algorithm of
choice and is suitable for large and continuous state spaces. We test our algorithm on a non-sequential decision task in
which the state is an image. While the problem is in fact linear, our method greatly outperforms linear Q-learning.
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1 Introduction

For many practical problems, the number of states in the environment is too large for a reinforcement learning agent
to visit all of them. This is not only true in the case of a continuous state space, where there are a continuum of states,
but even in discrete spaces where the number of states grows exponentially with the size of our state vector. This is the
well-known “curse of dimensionality” [1]. In such cases, function approximation techniques are necessary to predict the
value function for states that have not yet been visited. In this approach, a mapping from a feature vector representing
the state to the value function is learned, as the agent interacts with the environment. The choice of the features is
therefore a crucial factor in the success or failure of reinforcement learning. In RL problems each state is associated with
raw measured data about the environment. This data might be the pixels of an image for instance. The feature vector
is mapped from this raw data and should effectively represent the state in such a way that is invariant to distracting
elements. For instance, when a baseball is approaching, the action of catching it is the same whether it occurs in a
baseball stadium or in a backyard. Successful feature selection enables us to recognize the similarity between the two
situations, despite the fact that the background in each case is completely different. While recognizing such invariants
drastically reduces the size of the state space, the feature vector must be sufficiently descriptive such that the agent is
able to learn complicated behaviors. In the first implementation of TD-gammon [2], the state of a game of backgammon
was represented by a vector consisting of 198 elements. Even if the features intuitively capture the relevant information
of the problem, it may not be the best way to represent the state to the function approximator that is learning the value
function. Trial and error may be required to find a representation that leads to success.

Choosing the state representation is left to the ‘designer’, but in real-world problems this is unsatisfactory. Generating
the feature mapping automatically, is a necessary step in extending RL to more complicated problems and to domains
where experts cannot hand pick features. The literature on automatic feature generation is relatively sparse, owing
partially to the difficulty of the problem. Many of the existing methods base the learning of features on the Bellman error
of the value function estimates. These methods are known as Bellman Error Basis Function (BEBF) [3]. Other methods
require estimates of information about the Markov Decision Process, such as the transition or adjacency matrix [4], which
are difficult to acquire in many large problems. Additionally, most automatic feature generation methods are set in the
domain of policy evaluation. Feature generation for control methods, such as Q-learning, is an even less studied problem.
One such method [5] learns a metric for comparing states, such that states with similar transitions under the same action
are close with respect to this metric. In this approach, two states xi and xj , at times i and j, respectively, are similar if
their single step increments are similar, i.e. if xi+1 − xi and xj+1 − xj are similar. A potential problem with this method
is that the differences between consecutive states may not reliably indicate similarity of states with respect to the goal of
the agent. If distracting features are dominant, such as in visual systems, then the features of interest are not properly
accounted for in the state transitions.

In this paper, we present an automatic feature generator for RL that is also based on metric learning. However, in
our approach, the similarity between states is established with respect to the goal of our learning system, rather than
temporal differences in the state vectors. We first present our method and the information-theoretic metric learning
algorithm it utilizes. We then demonstrate the ability of our method to generate invariant features in a non-sequential
decision problem, where the state is a black and white image.

2 Metric Learning for Reinforcement Learning

To create a feature representation that is invariant to information not relevant to the current decision problem, we use
the following principle:

Two states are similar if the value of these states are similar under the same action.

Intuitively, the value function (specifically the Q-value) reflects the performance goals for the given problem indepen-
dently of the state. If Q(x, a) = Q(y, a) for states x and y and action a, then these states are similar, in the same way that
a stadium and a backyard are similar when moving your arm to catch a baseball.

Given this principle, the features we choose to represent the state should exist in neighborhoods defined by their Q-
values, not based on the Euclidean distances between the raw vectors that are associated with each state. The prospect of
learning an approximation of Q-values supports the principle we are using. If we choose a representation where states
with similar Q-values are clustered, the mapping from state/action pairs to Q-values can be smooth. In a representation
where neighboring states may have wildly different Q-values, it may be difficult or even impossible to learn such a
mapping. Imagine our baseball player is attempting first to catch a fly ball and then to field a ground ball. While the field
looks identical in both cases, save for the small speck that is the ball, to hold his glove high in the air would be successful
in the first case, and a failure in the second.

Consider a reinforcement learning agent that has interacted with the environment for N time steps to acquire tuples,
(xi, ai, Q(xi, ai)), consisting of the state, action, and Q-value at each time i. We wish to group states based on the action
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that was performed in that state, as these are the states for which we can compare the Q-values. Let Xa := {xi|ai = a},
be the set of states for action a. Each pair of states in Xa, for each a, provides a constraint on a metric m, such that if

|Q(xi, a)−Q(xj , a)| < |Q(xi, a)−Q(xk, a)| for xi, xj , xk ∈ Xa,

then m(xi, xj) < m(xi, xk). This is equivalent to considering a constraint on the mapping, φ, from states to feature
vectors. In the latter case, m(φ(xi), φ(xj)) < m(φ(xi), φ(xk)), where m is simply the Euclidean distance. Learning the
metric m or the mapping φ, that satisfies (or best satisfies) these constraints, provides the desired feature representation
for our states.

Luckily, learning a metric is a well-investigated problem, as finding a ‘good’ similarity measure is common in pattern
recognition and machine learning. The approach we consider is similar to metric-learning for classification [6, 7]. The
concept of metric-learning is to parametrize a distance function such that states with similar Q-values are deemed close
and states with very different Q-values are considered far apart. Most metric learning algorithms require hard infor-
mation representing class membership. In our problem, the information in the form of the Q-values is soft, and we
must find a metric on states which parallels the distances between Q-values. For this reason, we learn the metric via
an information-theoretic optimization problem that optimizes the information between the state representation and the
Q-values [8].

2.1 Distances and Similarity

The similarity between samples x and x′ on the ith dimensions is κ(x(i), x(i)′) = exp(−θd(x(i), x(i)′)2), where d(·, ·) is the
Euclidean distance and θ is a kernel size parameter. Changing the kernel size adjusts how close the samples must be in
order to be considered similar.

In terms of a group of samples, the pairwise distance matrix for the ith dimension is denoted Di where (Di)j,k =

d(x
(i)
j , x

(i)
k ) for j, k ∈ {1, . . . , n}. Likewise, the corresponding kernel matrix with kernel size parameter θ is Ki =

exp(−θD2
i ).

A similar quantity can be defined for the similarity between Q-values and the corresponding kernel-matrix is denoted L.

2.2 Entropy

Rényi’s α-order entropy is an information measure for probability distributions. Recent work [8], has shown how a
similar quantity can be defined in terms of the eigenvalues of a positive definite kernel matrix. Using the formulation of
Rényi’s entropy on the eigenvalues yields a matrix-based analog to entropy [8]:

Sα(B) =
1

1− α
log [tr(Bα)]. (1)

where tr(B) = 1

Unlike standard approaches that require knowing the distributions of the data or estimating its density using methods
such as Parzen windows, this approach directly estimates an entropy quantity without ever requiring an explicit density
function. Another key benefit is optimization can be done in terms of the kernel and distance matrix using matrix
calculus.

From this a measure of conditional entropy Sα(B|C) = Sα(B,C) − Sα(C) can be applied, and this form of conditional
entropy was used in previous work for learning a Mahalanobis distance [8].

2.3 Tensor Product Kernel

The tensor product between kernel functions is a joint measure for multivariate data formed as the product of kernels for
each dimension of the input.

Considering the Gaussian kernel, the tensor product kernel corresponds to using a non-negative combination of the

different Euclidean metrics as the argument to the kernel function. (A series of Hadamard products is denoted
∏N

i=1 Ai =
A1 ◦ · · · ◦AN , and entry-wise power as A◦r

i )

Kθ =
∏

i

K◦θi
i =

∏

i

exp(−θiD
2
i ) = exp(−

∑

i

θiD
2
i )

Adjusting the parameters of θ ≥ 0 changes the kernel size of each component kernel, and this is equivalent to scaling

each dimension of the input so as to form a new metric d2θ(x, x
′) =

∑
i θid

2(x(i), x(i)′).
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Figure 1: Example images for two consecutive
time steps of the game.
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Figure 2: Success rate for least squares and metric learning methods. The
error bars represent the interquartile range.

In order to learn this metric we consider the following information-theoretic optimization problem:

minimize
θ≥0

Sα(L,Kθ)

subject to Sα(Kθ) = η
(2)

This problem attempts to maximize the joint entropy of the state representation and the Q-values while constraining
the marginal entropy. Allowing a large value of η allows the entropy of the data sample to increase, which is usually
important for regularizing statistical estimates. However, if η is too high, a trivial solution is found where every sample
is deemed different. A good choice of η is Rényi’s entropy of the Q-values.

The relationship with the conditional entropy (Sα(L|K) = Sα(L,K)−Sα(K)) can be seen by transforming the constraint
into the Lagrangian formulation

minimize
θ≥0

Sα(L,Kθ)− λ (Sα(K)− η) (3)

with the Lagrange multiplier λ. However, the constraint on the non-negativity of the coefficients remains. As a simple
approach, an unconstrained optimization is formed by re-parametrizing the function in terms of w where θi = 10wi . By
solving this optimization problem, a new metric can be learned as a linear combination of metrics.

3 Experiment

To test the ability of our generated features to represent the state, we consider a non-sequential decision task, in which
the the state is a black and white image. By choosing a non-sequential task, the value of each action is known perfectly.
This was done to isolate the problem of feature generation from value estimation. This problem consists of a image that
is 5 pixels in height and N pixels wide. At most one pixel of each column is black, while the rest are white. At each time
step, the black pixels shift one to the right, and with probability 0.5, a randomly selected row of the first column is set
to black. When a pixel in the rightmost column is black, our RL agent must select the row in which it exists; thus there
are 5 actions. If the agent selects the black pixel, a reward of +1 is received. If it misses the black pixel, a reward of -1
is received. If all pixels in the rightmost column are white, the reward is 0 for all actions. The reward in this case is the
Q-value, as this is a non-sequential problem. See Figure 1 for an illustration of the game.

The state in this game is the image itself, which takes the form of a vector with 5 · N binary elements, representing the
values of each pixel. This is actually a problem for which a linear function of the raw state can perfectly approximate the
value function. Consider the case where N = 1. Then as an example, Q(x, a = 2) = θ′2x, if θ2 = [−1, 1,−1,−1,−1]′. If
N > 1, then all elements of θa not corresponding to the rightmost column are 0.
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The standard procedure in RL would be to learn θa for each a ∈ {1, ..., 5}, which provides an estimate of the Q-values.
While the Q-values are in fact a linear function of the state, there are many distracting elements in the image, namely
every black pixel not in the rightmost column, which impede the learning of θ. We compare our method to this linear
function approximation method, where the coefficients are with least squares.

The first 200 time steps serve as a training period, in which random actions are selected and stored with the associated
states and Q-values (rewards). At that point, we learn the feature mapping based on the Q-values. For the next 300 time
steps, the raw image vector is mapped to the feature vector, and compared to all previous feature vectors. We compare
the current image to the sets of previous images grouped by action, and select the action for which the Q-value of the
nearest neighbor image is greatest. For the product kernel, the goal is to learn a weighted combination of Euclidean
distances, resulting in a projection that only weights the pixels of interest in the right column. The dimensionality is
effectively reduced to 5.

For the linear function approximation, at every time step after 200, the coefficients are learned by finding the least squares
solution to Xaθa = Qa, for each action, where Xa is the matrix of the past states in which action a was used and Qa is the
vector of associated rewards. For each of the 300 testing images, the Q-value is estimated for each action, and the action
with highest Q is selected.

We evaluate both methods based on the rate of correct choices, relative to all instances in which a black pixel is in the
right column, out of the 300 testing images. The results are averaged over 20 Monte Carlo trials. We run the test for 7
values of N , and the results are seen in Figure 2. Our metric learning approach remains nearly perfect until N = 100,
while the least squares approach declines with increasing state space size. By N = 200, which corresponds to a 1000
element state vector, with 6200 possible states, the performance of both methods has declined to only slightly better than
random chance. The linear Q-learning approach fails for large state spaces because not enough data is available for it
to capture the elements of the image which correlate with successful runs. This occurs because the method attempts to
linearly combine all pixels in the image into the observed Q-values, which becomes an increasingly more difficult task
as the image grows. Our method simply observes Q-values, and figures out a way to compare the images that produced
similar ones.

4 Conclusion

The Q-values serve as a valuable indicator of the inherent similarity between states. Using a metric learning approach
we can capture this similarity in a feature mapping. The resultant features are invariant to the distracting elements of
the raw state, and learning proceeds much faster, as RL agents are able to generalize to previously unseen states when
the essential task is the same. Our method is shown to perform extremely well in a problem where Q-values are given
following each decision. Even for a space with 6100 states, only 200 time steps of interaction are required to achieve a 95%
success rate, while linear Q-learning operating on the raw image is only 30% successful, despite the fact that the optimal
solution is linear. Future work will apply our automatic feature generator alongside Q-value approximation techniques.
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